Unitinerario che unisce un self drive nella prorompente e lussureggiante isola di RĂ©union ad un rilassante soggiorno mare nella dolce isola di Mauritius. Due isole cosĂŹ vicine ma con paesaggi e culture completamente differenti, entrambe avvolte dalla calda luce dei Tropici. La route qui mĂšne au plus prĂšs du volcan du Piton de la Fournaise est un des endroits Ă  dĂ©couvrir absolument Ă  La RĂ©union. Mais il y a aussi la la Plaine des Sables, le Pas de Bellecombe, la Plaine des Cafres ou Nez de BƓuf. Tant de lieux Ă  la beautĂ© sauvage et juste incroyable. Le Piton de la Fournaise, La Plaine des Sables et le Pas de Bellecombe Je n’étais jamais allĂ©e sur l’üle de La RĂ©union. Alors je devais absolument monter jusqu’au Pas de Bellecombe. Me rapprocher au plus prĂšs du volcan du Piton de la Fournaise. Et pourquoi pas faire la randonnĂ©e qui y mĂšne. Qui n’a pas envie de dĂ©couvrir un volcan encore actif ? Ce jour-lĂ , nous partons tĂŽt le matin de notre logement situĂ© au Port. Il y a de gros nuages qui obscurcissent le ciel mais il ne pleut pas. La route est agrĂ©able et trĂšs jolie. Puis, ça se met Ă  grimer de plus en plus. Tout est si vert autour de nous, c’est vraiment un nouveau paysage qui s’offre Ă  nous. La pluie s’invite alors et plus on grimpe, plus on se retrouve Ă  l’intĂ©rieur du nuage. Le paysage change encore, la vĂ©gĂ©tation se rarĂ©fie et les roches apparaissent. Nous dĂ©couvrons la superbe Plaine des Sables, mĂȘme si on ne la distingue pas complĂštement. La route se transforme Ă  un moment en piste, et il faut faire bien attention avec notre voiture de location. Nous roulons encore un moment et arrivons au Pas de Bellecombe. Malheureusement nous ne voyons rien et le nuage est de plus en plus Ă©pais. Nous attendons un long moment dans la voiture mais le temps est de pire en pire. MalgrĂ© cette mĂ©tĂ©o maussade, nous apprĂ©cions Ă  fond la balade. Le Piton de la Fournaise est aujourd’hui capricieux et a dĂ©cidĂ© de garder pour lui ses beautĂ©s, dommage cette pluie. Si vous voulez SAVOIR QUE FAIRE QUAND IL PLEUT Ă  La RĂ©union, c’est ici. Comment se rendre au Piton de la Fournaise ? Comment aller au volcan actif de La RĂ©union ? Pour rejoindre ce volcan mythique, ce n’est pas trĂšs compliquĂ©. Depuis Saint-Louis, emprunter la RN1 vers l’est et Ă  Saint-Pierre emprunter la RN3. Passer Le Tampon et suivre la direction de la Plaine des Cafres. Continuer de grimper et passer tout prĂšs de la CitĂ© du Volcan. La RF5, la Route du Volcan, se poursuit un moment puis se transforme en piste avec la FR6. Tout au bout de cette piste, on arrive au Pas de Bellecombe, le terminus de la piste. C’est l’endroit qui mĂšne en voiture au plus prĂšs du Piton de la Fournaise. Vous ĂȘtes arrivĂ©s. La randonnĂ©e au Piton de la Fournaise C’est LA randonnĂ©e Ă  faire absolument Ă  La RĂ©union. Soyez prĂ©parĂ©s Ă  la mĂ©tĂ©o souvent capricieuse. Et n’oubliez pas vos chaussures de randonnĂ©e pour les 516 mĂštres de dĂ©nivelĂ© de cette trĂšs belle balade. La randonnĂ© au Piton de la Fournaise depuis le Pas de Bellecombe est un must. Vous pouvez aussi la dĂ©buter depuis le gĂźte du Volcan, un peu plus en aval. Mais pensez Ă  bien vĂ©rifier s’il y a des sentiers fermĂ©s ou s’il n’y a pas d’éruption en cours. Et vous pourrez profiter du Piton des Neiges, des cratĂšres Rival ou Dolomieu et bien entendu du Piton de la Fournaise. Quelques photos des lieux autour du volcan —> Pour savoir quels sont les lĂ©gumes et fruits exotiques de La RĂ©union c’est ici À lire aussi Si vous voulez savoir s’il y a des animaux dangereux Ă  La RĂ©union Ou bien dĂ©couvrir les plus belles randonnĂ©es de l’üle de La RĂ©union Tout savoir sur la vanille Ă  la vanilleraie Roulof Ă  La RĂ©union Et aussi dĂ©couvrir les 3 plus belles plages de La RĂ©union Puis dĂ©couvrir toutes les spĂ©cialitĂ©s de la RĂ©union Et savoir oĂč louer votre voiture Ă  La RĂ©union DĂ©couvrez aussi quel est le coĂ»t de la vie Ă  La RĂ©union ClaireExploratrice d'horizons pas toujours lointains, amatrice de photo, et fan de moutons Islandais, les marrons glacĂ©s sont mon pĂ©chĂ© mignon.
Publiéle 10/04/2007. Modifié le 01/01/2022. L'éruption du Piton de la Fournaise qui a débuté fin mars se poursuit par "bouffées", des projections de lave étant toujours observées mais à
Volcan de la RĂ©unionPiton de la FournaiseVolcan de la RĂ©union le piton de la Fournaise est l’un des volcans les plus actifs du monde. Ce volcan rĂ©unionnais mĂ©rite bien son nom de piton de la Fournaise avec une dizaine d’éruptions volcaniques depuis 2004, dont celle du 2 avril au 1er mai 2007, l’une des plus importantes Ă©ruptions du siĂšcle Ă  La RĂ©union. Les coulĂ©es de laves volcaniques se sont dĂ©versĂ©es Ă  prĂšs de 130 millions de m3 au Sud-Est de l’üle Ă©difiant 45 hectares de terres nouvelles sur l’ocĂ©an Indien. Plus de six mois ont Ă©tĂ© nĂ©cessaires pour reconstruire la route nationale, coupĂ©e sur 1 500 mĂštres de longueur. Il a fallu attendre que la lave volcanique refroidisse piton de la Fournaise est un volcan de type effusif ou hawaiien. La chambre magmatique supĂ©rieure situĂ©e Ă  moins d’1km sous terre se remplit peu Ă  peu de laves venues du manteau terrestre ; la surface du sol se bombe puis se fissure pour permettre l’éruption. Les laves jaillissent de cratĂšres et forment une vĂ©ritable riviĂšre qui coule le long des pentes de l’enclos. Cette partie de l’üle Ă©tant inhabitĂ©e et les Ă©ruptions Ă©tant approximativement prĂ©visibles, le volcan n’est pas une menace pour la RĂ©union VidĂ©o du volcan Piton de la Fournaise de l’Emission C’est pas Sorcier – France 3VidĂ©o RĂ©union VidĂ©o du volcan Piton de la Fournaise de l’Emission Thalassa – France 3 DĂ©couvrir ce Volcan de la RĂ©union Piton de la FournaiseLe piton de la Fournaise est un volcan trĂšs voiture, en contrebas du volcan et en bord de mer, on peut voir les coulĂ©es de lave prĂ©cipitĂ©e dans les flots qui coupent la RN2 ou Route des Laves qui traverse le grand BrĂ»lĂ©. La route est jalonnĂ©e de panneaux datant les coulĂ©es de laves traversĂ©es. Elle passe devant La Vierge au Parasol et l’église Notre-Dame des route carrossable traversant le paysage lunaire de la plaine des Sables permet d’accĂ©der au Pas de Bellecombe, juste au bord de l’enclos. De lĂ , partent plusieurs itinĂ©raires de randonnĂ©es vers le volcan plus ou moins difficiles. On peut Ă©galement dĂ©couvrir le volcan Ă  cheval, en VTT ou en le Ă  Bourg Murat, juste avant la Route forestiĂšre du Volcan, la maison du Volcan est incontournable pour parfaire ses connaissances voyage Un voyage en Namibie vous fera dĂ©couvrir des paysages aux grands espaces Ă  travers les plaines lunaire, les dunes de sable rouge, la savane et les montagnes bleues ou mauves. Mais en plus de ces paysages, il y a aussi les animaux sauvages zĂšbres, des oryx, ou des koudous. Organisez votre voyage en Namibie sans plus attendre !
LEPETIT OCEAN atypical Creole house 5 mts walk from the Manapagny Basin, Saint-Joseph – Prenota al Miglior Prezzo Garantito! 34 foto ti aspettano su Booking.com. DÉCOUVRIR Histoire Personnages GĂ©ographie Littoral Montagnes ForĂȘts RiviĂšres Cascades TAAF et Eparses Cartes Climat Cyclones DĂ©calage horaire Patrimoine Flore Faune Faune marine Parc National RĂ©serve marine Culture Architecture Cuisine MarchĂ©s MusĂ©es Musique Tourisme Galerie photos VIVRE Carte interactive S’installer FormalitĂ©s Les 24 communes de La RĂ©union Immobilier Prix Construction DĂ©fiscalisation Transports AĂ©roport Roland Garros Grand Port Maritime Economie Consommation Emploi Energie Achats en ligne et livraison Ă  La RĂ©union Education LycĂ©es CollĂšges Ecoles Retraite Ă  La RĂ©union SantĂ© Sports Canyoning RandonnĂ©e Surf Trail S’ÉMERVEILLER Littoral et plages Volcan Tunnels de lave Cirque de Mafate Cirque de Cilaos Cirque de Salazie Traditions Villages CrĂ©oles Routes touristiques Baleines et cĂ©tacĂ©s TROUVER DĂ©placement Location de voitures Location de vĂ©hicules utilitaires Taxi et VTC Transport aĂ©rien Transport en commun Transport touristique HĂ©bergement HĂŽtels Chambres d’hĂŽtes Locations de vacances Campings Divertissement MusĂ©es Sur terre Dans l’eau Dans les airs DĂ©mĂ©nager Ă  La RĂ©union Guide Pratique Liens utiles S’INFORMER Covid-19 Ă  La RĂ©union MĂ©tĂ©o Webcams Prix des carburants Infos routes ActivitĂ© cyclonique ActivitĂ© volcanique QualitĂ© de l’air QualitĂ© de l’eau AGENDA CONTACTER En poursuivant votre navigation, vous acceptez notre politique relative Ă  l'utilisation de cookies. Accepter En Savoir +
Webcamdu Piton de Bert. Cette caméra livre une vue de l'enclos Fouqué vers les Grandes Rampes et les flancs Sud-Est de la Fournaise. Webcam du Piton de Bert. Cette caméra
Research Open Access Published 13 August 2022 Virginie Pinel2, JoaquĂ­n M. C. Belart3,4, Marcello De Michele5, Catherine Proy6, Claire Tinel6, Etienne Berthier7, Yannick GuĂ©henneux1, Magnus Tumi Gudmundsson4, Birgir V. Óskarsson8, Shan Gremion9, Daniel Raucoules5, SĂ©bastien Valade10, Francesco Massimetti11 & Bjorn Oddsson12 Journal of Applied Volcanology volume 11, Article number 10 2022 Cite this article 103 Accesses 3 Altmetric Metrics details AbstractWithin the framework of the CIEST2 Cellule d'Intervention d'Expertise Scientifique et Technique new generation and thanks to the support of CNES, the French space agency, the first phase of the Fagradalsfjall eruption was exceptionally well covered by high resolution optical satellite data, through daily acquisitions of PlĂ©iades images in stereo mode. In this study, we show how PlĂ©iades data provided real-time information useful for the operational monitoring of the ongoing eruption. An estimation of the volume of lava emitted as well as the corresponding effusion rate could be derived and delivered to the civil protection less than 6 h after the data acquisition. This information is complementary to and consistent with estimates obtained through the HOTVOLC service using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board Meteosat Second Generation MGS geostationary satellites, operated by the European Space Agency ESA, characterized by a lower spatial resolution and a higher temporal one. In addition to the information provided on the lava emission, PlĂ©iades data also helped characterize the intensity of the eruption by providing insight into the elevation and the velocity of the volcanic plume. The survey of this effusive eruption, well anticipated by a series of precursors, is a proof of concept of the efficiency of optical/thermal satellite data for volcanic crisis real-time monitoring. IntroductionLava flows on the ground and related atmospheric ash/SO2 emissions induced by the volcanic activity are common hazards occurring during eruptions and can represent a threat to the population living in the vicinity of volcanoes areas Allen et al., 2000; Vicari et al., 2011. Effusion rates and degassing are key information on the intensity of the eruption, the driving forces leading to magma ascent and thus the temporal evolution of the event. Today, operational monitoring of volcanic products is achieved through both in-situ measurements and ground-based instruments Marzano et al., 2006; Calvari et al., 2011; Gouhier et al., 2012; Aiuppa et al., 2015; Di Traglia et al., 2021. The development of ground-based remote sensing tools, such as those aimed at studying lava flows propagation, open vent degassing, or ash emissions are now part of routine monitoring operations at many volcanoes Scollo et al., 2009; Barsotti et al., 2020; Peltier et al., 2021; Kelfoun et al., 2021. However, for volcanoes located in remote areas, where the installation and maintenance of expensive instruments network is difficult, satellite-based techniques are more beneficial if satellite remote sensing systems can provide a rapid assessment of volcanic activity Schmidt et al., 2015; Gouhier et al., 2016; Coppola et al., 2016a, b; Dumont et al., 2018; Valade et al., 2019; Albino et al., 2020. This is particularly important as such data can potentially be used to derive crucial information for decision makers. Yet the provision of accurate data in a timely fashion remains very challenging from space as sensors on-board Low-Earth Orbiting LEO platforms with very high spatial resolutions usually have low frequency of acquisition such as PlĂ©iades, while sensors on-board geostationary GEO platforms with very high acquisition rate suffer from low spatial resolution such as MSG satellites.Satellites have already been extensively used to produce digital elevation models DEMs in volcanic areas and infer the volume of eruptive deposits by comparing the differences between a DEM obtained after the emplacement of deposits with a pre-eruptive DEM. While most studies are based on TanDEM-X bistatic radar data Albino 2015, Bato 2016, Albino 2020, some use high-resolution PlĂ©iades optical data acquired in stereo mode Bagnardi et al 2016; Carrara et al 2019. For the October 2010 effusive eruption of Piton de la Fournaise, RĂ©union Island, Bato et al, 2016 made a direct comparison of mean effusion rates derived by DEMs differentiation and by thermal anomalies quantification from MODIS data and demonstrated a fairly good agreement between the two independent dataset. While the growth rate of domes has been estimated from PlĂ©iades imagery Pinel et al., 2020; Moussallam et al, 2021, until now, optical satellite imagery has never been used to estimate the temporal evolution of the volume of magma emitted during a lava flow emplacement event, providing only an estimate of the total volume of the emplaced lava flow. However, there are a few examples of studies providing the temporal evolution of the eruptive rate based on TanDEM-X data Poland 2014, Arnold 2017, Kubanek 2017. However, all these studies were performed a posteriori and, so far, satellite imagery has never provided real-time DEMs for operational monitoring. The time evolution of effusion rates can also be obtained from MidWave InfraRed MWIR satellite imagery either from LEO platforms such as Terra-MODIS providing time-average effusion rates Wright et al., 2001; Coppola et al., 2016a, b, or from GEO platforms such as Meteosat-SEVIRI, providing instantaneous effusion rates Ganci et al., 2012; Gouhier et al., 2016. A comparison of the cumulative volume estimated by SEVIRI and DEM difference has been performed a posteriori for the 2015 eruption of Etna Ganci et al. 2019a. The volume derived from SEVIRI data was 20% smaller than that estimated from the difference between DEMs, which was interpreted by the authors as resulting from lava porosity. Interestingly, Sentinel-2 satellite ESA-Copernicus providing ShortWave InfraRed SWIR data fills the gap between PlĂ©iades Optical and Meteosat MWIR data in terms of temporal and spatial resolutions. In particular, it allows an attractive compromise for the monitoring of effusive eruptions and the cartography of lava flow field Valade et al., 2019; Massimetti et al., 2020. Finally, the coherence of radar data can also be used in real time to derive the evolution of the surface covered by the lava Ebmeier et al., 2012; Kubanek et al., 2015; Valade et al., 2019; Richter and Froger 2020.In order to promote the use of satellite data for hazards studies and mitigation, two French initiatives have been undertaken. i The Technical-Scientific Intervention and expertise unit CIEST2 – Cellule d'Intervention d'Expertise Scientifique et Technique new generation, was created in 2019 following the expression of interest of about 30 French scientists. The objective is to extend and facilitate the acquisition and use of very high optical images from PlĂ©iades acquired under the International Charter "Space and Major Disasters", for the understanding and study of geological hazards. The CIEST2 initiative is now placed in the framework of the solid Earth national data and services pole Formter. ii In parallel, HOTVOLC is a geostationary satellite-data-driven service dedicated to the real-time monitoring of active volcanoes, allowing lava hot spots, ash and SO2 clouds products to be detected and tracked at an acquisition rate of one image every 15 min Gouhier et al., 2016; 2020. HOTVOLC uses Meteosat-SEVIRI infrared images and is part of the National Observation Service for Volcanology SNOV – Service National des Observations en Volcanologie operated by the CNRS Centre National de la Recherche Scientifique. Its mission is to ensure continuous and permanent monitoring of French volcanoes, as well as volcanic targets Italy, Iceland, Lesser Antilles, etc. whose products may affect French this context, the recent Icelandic eruption of Mt. Fagradalsfjall in the Reykjanes Peninsula, which started on March 19, 2021 offers a very good opportunity to demonstrate the ability of the CIEST2 and HOTVOLC initiatives to provide a rapid and concerted response to gather crucial information useful for making informed decisions. The Fagradalsfjall eruption was closely monitored with remote sensing data through the CIEST2, HOTVOLC and MOUNTS initiatives during the first 10 days of the eruption, and through the entire eruption using a large amount of airborne data Pedersen et al., 2022. The eruption is a long-term basaltic effusive eruption that initiated as a fissure eruption on 19 March 2021 within an enclosed valley, accompanied by small lava fountains which ended on 18 september. In this paper, we present the two French initiatives CIEST2 and HOTVOLC with associated methodology, and discuss their capabilities and limitations, as well as the major interest of coupling these two approaches. We also present the potential contribution of Sentinel-2 data for the estimation of lava surface from the operational platforms MOUNTS. Then, we describe the results obtained from PlĂ©iades and Meteosat data. This comprises, in particular, the estimation of lava flows volume and volcanic plume elevation from PlĂ©iades DEMs, as well as the comparison between average and instantaneous lava discharge rates using PlĂ©iades and Meteosat images, respectively. We also provide airborne data at very high spatial resolution, hereafter used as a validation of satellite-based initiatives for a rapid response using CNES/ESA spatial resourcesCIEST2 Technical-Scientific Intervention and expertise unitCIEST2 is a French initiative aiming at fostering cooperation of the geophysical community around the use of satellite imagery for geohazards monitoring and understanding. This synergy between CNES the French Space Agency and the French “solid Earth” community aims at a quick response in the programming and use of Earth observation resources, in the event of a geophysical hazard. The goal of the initiative is to analyze and process space imagery to ultimately improve our knowledge of a geophysical initiative started in 2005 as a formal agreement between six national organizations BRGM, CEA, INSU, IPGP, IRD, UCBL which aimed to extend the use of space resources, in particular the SPOT images acquired within the framework of the International Charter on Space and Major Disasters, for the study and understanding of geophysical hazards. Today 2022 the CIEST2 initiative has become a synergistic working group based on very high resolution PlĂ©iades stereo images provided by CNES and potentially Copernicus Sentinel-1 and -2 data. The organization is as follows In case of events such as earthquake, volcano eruption, landslides or glacier collapse, the CIEST2 steering committee decides to activate the CIEST2 device. Then, CNES immediately triggers PlĂ©iades stereo tasking by Airbus Defense and Space Airbus DS in order to enable DEM generation or multi-temporal analysis. The acquisition strategy chosen consists of pointing the PlĂ©iades-1A and -1B satellites systematically at each passage over the area. For 10 consecutive days, daily acquisitions in "stereo" mode take place, exploiting the agility of the satellite, capable of pointing its optical system towards any target located in its field of view. Each acquisition consists of a pair of two images, taken with different viewing angles, less than a minute apart from the same orbit, in order to increase the chances of obtaining a visual, and, if applicable, to be able to calculate the topography of the area of interest by Geostationary-data-driven operational serviceHOTVOLC is a Web-GIS Geographic Information System volcano monitoring system Fig. 1 using SEVIRI Spinning Enhanced Visible and Infrared Imager sensor on-board METEOSAT geostationary satellite and developed at the OPGC Observatoire de Physique du Globe de Clermont-Ferrand in 2009 after the installation of the first receiving station. The spectral bands of the SEVIRI sensor allow the HOTVOLC system to simultaneously characterize volcanic ash, sulfur dioxide, and lava flow emissions. It is designed for the real-time monitoring of ~ 50 active volcanoes and provides high value-added products at the frequency of one image every 15 min with a pixel resolution of 3 × 3 km at nadir. HOTVOLC is open-access and data can be downloaded from the entire database covering the period 2010–2021. Satellite products are delivered in the form of i geo-referenced images geotiff tiled on a background map, and ii time series csv associated with interactive data visualization technologies. HOTVOLC is part of the SNOV and is labelled by the CNRS since 2012. Within this framework we ensure real-time monitoring of French volcanic targets, as for Piton de la Fournaise effusive eruptions Peltier et al., 2021; Thivet et al., 2020. Also, we provide timely information on other volcanic targets whose products may affect French territories such as the Icelandic 2010 Eyjafjallajökull eruption Bonadonna et al., 2011; Labazuy et al., 2012, whose volcanic ash plumes reached the French airspace. Since 2018, HOTVOLC falls under the official function of Meteo-France Gouhier et al., 2020 and provides data to the Toulouse VAAC Volcanic Ash Advisory Centre allowing a better assessment of the risk related to air traffic. Figure 1 is a screenshot of the HOTVOLC Web-GIS interface, showing the first hot spot anomaly detected by the system on March 19, at 21h15 UTC, only 30 min after the 2021 Fagradalsfjall eruption start, and which evidences the arrival of lava flows on the 1Screenshot of the HOTVOLC Web-GIS interface showing the hot spot anomalies red pixels in the Reykjanes peninsula 45 min after the onset of the eruption on March 19, 21h15 UTC. Below, one can observe a time series of the total spectral radiance spanning one month of effusive activityFull size imageMOUNTS Sentinel-Copernicus operational serviceMOUNTS Monitoring Unrest from Space, Valade et al. 2019, is an operational volcano monitoring system using the polar-orbiting ESA Copernicus Sentinel satellite constellation Sentinel-1, -2, -5P, together with Deep Learning, to assist in specific processing tasks. The synergistic use of radar Sentinel-1 Synthetic Aperture Radar SAR, short-wave infrared Sentinel-2 MultiSpectral Instrument MSI and ultraviolet Sentinel-5P TROPOMI payloads, allows for monitoring on a single web-interface of surface deformation, topographic changes, emplacement of volcanic deposits, detection of thermal anomalies, and emission of volcanic SO2. The web-design is inspired by the MIROVA volcano monitoring system Coppola et al. 2016a, b, whereby monitored products are delivered in the form of images and time series, with interactive tools added to ease the data visualization Fig. 2. The system currently monitors over 70 volcanoes worldwide, but the number is regularly increasing as its flexible design allows for rapid addition of new volcanoes in response to volcanic unrest in any part of the 2Screenshot of the MOUNTS interface showing Sentinel data images and time series in the Reykjanes peninsula at the onset of the eruptionFull size imageIn this study we will only present Sentinel-2 data from MOUNTS, here used to derive information on lava flow field emplacement. Sentinel products are automatically downloaded from the Copernicus Open Access Hub as soon as they are available typically 2–12 h from sensing for Sentinel-2 L1C products, and immediately processed and published on the MOUNTS website typically h after availability online. Sentinel-2 images are acquired from two polar-orbiting satellites Sentinel-2A and -2B, launched in 2015 and 2017 respectively, and placed 180° from each other in the same sun-synchronous orbit. The revisit time is 5-days on average reduced to 2–3 days at mid-latitudes, with spatial resolution of 20 m/pixel in the SWIR bands and 10 m/pixel in the optical dataThe data collected by PlĂ©iades during 22–31 March 2021 days 3 to 13 after the start of the eruption were tasked by Airbus DS and CNES in "emergency mode”. During this time period, the satellite imaged the area of interest daily between 1250–1330 local time, and the images were available for download about 2 h after the acquisition. Table 1 lists the characteristics of the subset of images for which the eruption site was cloud 1 Characteristics of PlĂ©iades acquisitions all in stereo mode with good visibility limited cloud cover over the eruption site and used to estimate the volume of the lava field between days 3 and 13 after the eruption startedFull size tableMapping the lava area, volume and effusion rateOnce downloaded, we processed a subset of the images using the Ames StereoPipeline ASP, Shean et al., 2016 with the correlation parameters defined by Deschamps-Berger et al., 2020. The processing pipeline included the use of a reference DEM, which constrains the matching algorithms in the photogrammetric processing. For reference, we used the IslandsDEMv0 from the National Land Survey of Iceland The IslandsDEM is a seamless 2 × 2 m DEM mosaic with improved spatial accuracy compared to the ArcticDEM Porter et al., 2018, by merging repeated ArcticDEM acquisitions in order to minimize processing time with ASP of each PlĂ©iades stereopair was 200 °C ca., with an overall estimate of 2 – 4% false alerts detected Massimetti et al., 2020. The reliability of the applied algorithm has already been successfully tested, firstly with a direct comparison to volcanogenic heat flux in Watt through MODIS Middle Infrared images; and then on a variety of different volcanological thermal-emitting phenomena worldwide, such as strombolian and effusive eruptions Laiolo et al., 2019, open-vent and lava lakes Massimetti et al., 2020 and explosive lava dome behavior Shevchenko et al., 2021. The algorithm used here is currently part of two online, automated, near-real time and global volcanic monitoring systems the MIROVA thermal monitoring system based on MODIS MIR data, Coppola et al., 2016a, b, and the multiparametric MOUNTS project presented above; Valade et al., 2019, and was the first SWIR Sentinel-2 thermal algorithm operationally online and publicly available Massimetti et al., 2020.Results and DiscussionPlĂ©iadesLava flow field characterizationFigure 3 is an example of a multispectral image left panel derived from the PlĂ©iades stereo-images acquired on the 30th of March. It shows the lava flow footprint with hot spots in red color located at the center of the lava flow unit, and cooled areas in black around it. On the right panel, we provide the lava thickness map with volume of magma emitted and surface footprint. 11 days after the eruption start, the active center part of the lava flow reaches a maximum thickness of 35 m, for a surface of km2, leading to a lava volume of Mm3 at this time point of magma emitted. This information was provided to the Icelandic Civil Protection about 6 h after the image 3Left panel PlĂ©iades multispectral image acquired on the 30th of March 2021, Right Panel lava thickness derived by differentiating the DEM produced in response mode from the images acquired on the 30th of March 2021 and the pre-eruptive arctic DEM. Background hillshade of the 30th March DEM. © CNES 2021, Distribution Airbus DSFull size imageAll successive volumes and effusion rates 22, 23, 26, 29, 30, and 31 March estimated in the response mode either from PlĂ©iades images or airborne surveys are listed in Table 2 together with those estimated by reanalysis and represented in Fig. 4. Reanalysis data are very close to the ones of the response mode showing the robustness of operational routines used which is essential for rapid and reliable response of the Civil Protection Authorities. The data presented demonstrate that the cumulative volume Fig. 4 increases almost linearly with time having a lava effusion rate ranging from 5–6 m3/s. In more details, the accuracy of PlĂ©iades data allows us to witness a small but significant decrease of the lava effusion rate from m3/s on the 22nd of March to m3/s on the 30th of March Fig. 4. Interestingly, the two lava volumes provided by airborne data are in very good agreement with the PlĂ©iades results. Indeed, lava volumes derived from airborne data on 22/03 1010UTC is Mm3 while the PlĂ©iades one, ~3 hours later 1315UTC on the same day, is Mm3. Airborne results, seen here as ground truth, demonstrate the accuracy of PlĂ©iades data, and reinforce the objective of the CIEST2 initiative as using PlĂ©iades images for operational purposes. Figure 5 presents all the thickness maps derived from PlĂ©iades data in the reanalysis mode. From Table 2 and Fig. 4, it appears here again that there is no significant difference between volumes estimated in response mode and those estimated afterwards during the reanalysis differences are within error bars. We can thus conclude that the response mode was efficient at providing a quick and rather accurate estimation to the Icelandic Civil Protection. For the airborne survey, the reanalysis slightly modified the estimation of volume derived from the survey performed on the 23rd of March whereas it didn’t change significantly the estimation derived from the one made on the 31st of March. The thickness distribution agreement derived from PlĂ©iades images and the airborne survey has been tested as a thickness difference map Fig. 6 on 23 March, where the PlĂ©iades acquisition was performed 3 h only after the airborne survey. The result is important, as no significant elevation difference remains overall, except at the location of the active vents of lava emission, where effusion rates are high enough to build a detectable change in lava flow elevation in about 3 2 Total lava volumes calculated from PlĂ©iades and airborne stereoimages, in response-mode and reanalysis-mode, using the Islands DEM as the pre-eruption DEM. Volumes are expressed in million cubic meters. All the effusion rates are reported as an average since the start of the eruption, defined on 19 Mar 2021, 2140 local timeFull size tableFig. 4Lava volume and effusion rate average since the start of the eruption calculated in response mode and in reanalysis modeFull size imageFig. 5Lava thickness maps obtained after reanalysis for the 5 PlĂ©iades acquisitions listed in Table 2. Background PlĂ©iades orthorectified images. © CNES 2021, Distribution Airbus DSFull size imageFig. 6Difference in elevation between the two surveys from 23 March PlĂ©iades and airborne DEMs, in reanalysis mode. Red colors indicate thickening, as in the NW lobes of the eruptionFull size imageVolcanic plume characterizationVolcanic plume altitude estimation is essential as it provides information on eruption source parameters and dynamics, and is essential for air traffic risks mitigation. In this regard, the Plume Elevation Model PEM as calculated from PlĂ©iades is very accurate and can be reliably used. In Fig. 7, we presents the results of the PEM from a volcanic cloud imaged on the 23rd of March 2021 by PlĂ©iades. The altitude of the volcanic cloud varies between 300 and 800 m above sea level. This is a weak buoyant plume, mostly composed of condensed water, and probably sulfuric acid droplets with little or no ash Barnie et al., 2022. The trajectory of such a volcanic plume is fully controlled by the wind. The maximum velocity of the volcanic plume displacement reaches 14 m/s, which is in accordance with observations made with the Global Forecast System GFS by National Oceanic and Atmospheric administration NOAA, visualized with Ventusky web platform 7Plume Elevation Model of Fagradalsfjall, results from the 23rd of March 2021 top PlĂ©iades image, panchromatic band; middle produced elevation map; bottom produced velocity map. PlĂ©iades images courtesy of CNES via CIEST2, © CNES 2021, Distribution Airbus DSFull size imageMeteosat-SEVIRIAs a geostationary platform, the MSG-SEVIRI satellite allows rapid detection of lava hot spots as well as the estimation of quantitative parameters such as lava volume and lava effusion rates. This operational effort is currently being carried out by the HOTVOLC web-service, especially for Icelandic targets where volcanic eruptions are frequent. Therefore, results presented here directly come from data of the HOTVOLC platform, in crisis response mode, and no offline processing has been carried out for this particular case. This fills the main objective of the paper, that is, to show how satellite data can assist rapid decision making and response with online data using operational Fig. 8, we show a time series of the lava Volume Flow Rate VFR in m3/s for the first 10 days of the eruption, associated with the cumulative lava volume over the same period. The first detection occurred at 21h15 UTC on 19 March with a VFR of m3/s, that is, less than one hour after the eruption start. The related hot spot detection is visible in real-time on the HOTVOLC interface, and associated with a color code scaled to the spectral radiance amplitude. Detections were scarce during the following two days likely due to the presence of a volcanic plume above the source vents. Then, the rate of acquisition improves to one image every 15 min and shows an increase of the VFR up to 20–30 m3/s around 23 March. Then, the VFR decreases to values in the range 5–10 m3/s for the rest of the period with some peaks at around 15 m3/s. The time evolution of the VFR can also be read through the cumulative lava volume slope, first increasing, and then decreasing. On March 30, the total volume emitted and estimated using MSG-SEVIRI is ~ Mm3, and corresponding to an average effusion rate over the ten days of m3/s. In Fig. 8, we also compare cumulative lava volume from MSG-SEVIRI, PlĂ©iades and airborne data. Related volumes estimations are quite close and show a similar time evolution, with all values derived from MSG-SEVIRI being slightly larger than the ones derived from other methods. All results are summarized in Table 3 in the conclusion 8time series of the instantaneous lava Volume Flow Rate VFR in m3/s and cumulative lava volume m3 during the first 10 days of the eruption, with landmarks showing acquisition times of PlĂ©iades imagesFull size imageTable 3 Summary of the quantitative information on the lava flow evolution provided by the various independent remote sensing datasets considered in this studyFull size tableSentinel-2Here we present Sentinel-2 MSI images S2 hereafter processed by MOUNTS, with the aim to show the contribution of these products having an intermediate spatial and temporal resolution with respect to PlĂ©iades and Meteosat products. As the effusive eruption began on 19 March from a ~ 150 m long fissure inside the Geldingadalir valley, and evolved to a larger crater with two main vents, the spatial resolution of S2 products is appropriate to map and observe the evolution of the lava field. We show the first two cloud-free images, depicting the first stage of the eruption, acquired on the 23rd of March 2021 1302 UTC and the 30th of March 2021 1312 UTC. Other S2 images were acquired on March 25 and 28. However the thick and pervasive cloud coverage does not allow proper visualization of the evolving lava field. The images are presented in Fig. 9, with three different visualizations i 10x10 km image with a combination of optical bands and SWIR bands, highlighting the presence of hot materials over background and to appreciate the surrounding environmental features; ii a 2x2 km zoom with a combination of optical and SWIR bands, only for the pixel detected by the algorithm as hot; iii a 2x2 km side zoom solely with the SWIR 9Cloud-free Sentinel-2 images acquired during the first 10 days of the eruption. Left panel is a 10x10 km image with a combination of optical bands and SWIR bands "hot" pixel detected by the algorithm are displayed using the SWIR bands, middle panel is a 2x2 km zoom, right panel is a 2x2 km zoom with solely SWIR band combinationFull size imageThe hot spot algorithm automatically detected on 23 March a total of 920 hot pixels, and on 30 March a total of 686 pixels. These can be converted into “hot” area by multiplying by the pixel area 20X20 m2 of the Sentinel 2 SWIR bands. The converted area thus resulted in km2 and km2 for 23 March and 30 March, two S2 images, acquired 7 days apart, allow monitoring of the lava flow field evolution. The first image shows a single and unique thermal anomaly expanding around the main eruptive fissure, while the second presents an already partially evolved lava area, with some portions already cooled and crusted NNW, a portion still hot and active around the main vents, and the first stage of lava flow moving towards the described in Massimetti et al. 2020 and visible in Fig. 9, the number of hot pixels detected over highly radiative bodies such as lava flows can sometimes be overestimated, in particular due to halo effects and artifacts on the MSI detector diffraction spikes triggered by instrument optics effects and intense thermal emissions, particularly visible on the March 23 acquisition. Nevertheless, the lava flow area estimated by S2 seems in good agreement with PlĂ©iades image acquired on the 30th of March 2021 see Fig. 3, with a final estimate of first part of the ongoing effusive eruption at Fagradalsfjall on Reykjanes Peninsula, Iceland that began March 19, 2021, was closely monitored in near-real time by photogrammetry using high-resolution optical PlĂ©iades stereo images. Key information such as the lava flow outlines, thickness maps, volumes and average effusion rates were provided to the civil protection in less than 6 h after the data acquisition, which was useful for hazard evaluation, aided in the development of scenarios on potential impact on infrastructure, and helped to manage tourism resulting from this spectacular eruption not far from of the Icelandic capital our knowledge, this is the first time that stereo High Resolution optical satellite data are used in an operational way for eruption monitoring. The absence of prior usage for hazard monitoring is probably linked to non-systematic availability of these datasets. For the Fagradalsfjall eruption, PlĂ©iades acquisitions were available, during the first ten days of the event, thanks to a special tasking request made to Airbus DS by CNES after the CIEST2 activation. We benefited from a favorable situation where the eruptive event had been anticipated and weather conditions during this period were quite good. The systematic acquisitions over the eruption site lasted for 10 days but additional stereo PlĂ©iades images have been acquired subsequently 28th of April and 2nd of July by the Icelandic Volcanoes Supersite project supported by the Committee on Earth Observing Satellites or by commercial the subsequent reanalysis of the results produced initially in an operational way and the comparison with area, thickness, volume, and effusion rates derived from airborne surveys validate the near-real time estimations obtained in “response mode” and rapidly provided to local authorities for crisis management. In addition, PlĂ©iades images have the potential to provide useful complementary information on the state of the volcanic plume elevation and velocity. For the response mode, we relied on local processing chains, quickly adjusting off-the-shelf tools. Indeed, operational monitoring platforms for volcanic activity like MOUNTS or HOTVOLC usually takes advantage of systematic and freely distributed satellite acquisitions. In this study, by comparing the lava flow area and effusion rate estimations derived from PlĂ©iades images with, respectively, the area and effusion rates obtained from respectively Sentinel-2 data and from MSG-SEVIRI data, we confirmed the potential of these open-access platforms to quantitatively provide robust real-time information for effusive eruption monitoring see Table 3 for a summary of results obtained by various independent methods.The eruption of Fagradalsfjall 2021 is a proof of concept of the added value of satellite data for volcano monitoring. It shows that despite the strong potential of routinely acquired satellite data Copernicus, MSG and their efficient exploitation via online and open access platforms, access and availability of high resolution data such as PlĂ©iades imagery can be of major importance in developing operational processing chains dedicated to these particular data. In this perspective, the DSM-OPT online service of ForMter operated by EOST has been improved to automatically produce DEMs from PlĂ©iades stereo images as soon as they are delivered by Airbus DS after activation by CIEST2. Since the Icelandic eruption, CIEST2 has also enabled PlĂ©iades acquisition for the St Vincent SoufriĂšre eruption in April 2021 and for the Nyiragongo eruption in May 2021. Availability of data and materials The datasets used and/or analyzed during the current study are available from the corresponding author on. reasonable request. ReferencesPorter, C., Morin, P., Howat, I., et al. ArcticDEM. Harvard Dataverse, 2018, vol. 1, p. D E., Bhushan, S. 2021. Chamoli Disaster Pre-event DEM 2015-05-07 WorldView-1 Stereo. D E., Bhushan, S., Berthier, E., Deschamps-Berger, C., Gascoin, S., Knuth, F. 2021. Chamoli Disaster Post-event 2-m DEM Composite February 10-11, 2021 and Difference Map. A, Fiorani L, Santoro S, Parracino S, Nuvoli M, Chiodini G, Tamburello G 2015 New ground-based lidar enables volcanic CO 2 flux measurements. Sci Rep 511–12Article Google Scholar Albino F, Smets B, d’Oreye N, Kervyn F 2015 High-resolution TanDEM-X DEM An accurate method to estimate lava flow volumes at Nyamulagira Volcano DR Congo. Journal of Geophysical Research Solid Earth 12064189–4207Article Google Scholar F. Albino, J. Biggs, R. Escobar-Wolf, A. Naismith, M. Watson, Phillips, Chigna Marroquin, Using TanDEM-X to measure pyroclastic flow source location, thickness and volume Application to the 3rd June 2018 eruption of Fuego volcano, Guatemala, Journal of Volcanology and Geothermal Research, Volume 406, 2020Albino, F., Biggs, J., Yu, C., & Li, Z. 2020. Automated Methods for Detecting Volcanic Deformation Using Sentinel‐1 InSAR Time Series Illustrated by the 2017–2018 Unrest at Agung, Indonesia. Journal of Geophysical Research Solid Earth, 1252, AG, Baxter PJ, Ottley CJ 2000 Gas and particle emissions from SoufriĂšre Hills Volcano, Montserrat, West Indies characterization and health hazard assessment. Bull Volcanol 6218–19Article Google Scholar Arnold D, Biggs J, Anderson K, Vallejo Vargas S, Wadge G, Ebmeier S, Naranjo M, Mothes P 2017 Decaying lava extrusion rate at El Reventador Volcano, Ecuador, measured using high-resolution satellite radar. J Geophys Res Solid Earth 1229966–9988Article Google Scholar Bagnardi M, Gonzalez PJ, Hooper A 2016 High-resolution digital elevation model from tri-stereo PlĂ©iades-1 satellite imagery for lava flow volume estimates at Fogo volcano. Geophys Res Lett 43126267–6275Article Google Scholar Barnie, T., Titos, M., Hjörvar, T., Bergsson, B., PĂĄlsson, S., Oddson, B., ... & Arason, Þ. 2022. Monitoring volcanic plume height and fountain height using webcameras at the 2021 Fagradalsfjall eruption in Iceland No. EGU22–12260. Copernicus S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Ófeigsson BG, Vogfjörd K 2020 Operational response and hazards assessment during the 2014–2015 volcanic crisis at BĂĄrarbunga volcano and associated eruption at Holuhraun, Iceland. J Volcanol Geoth Res 390106753Article Google Scholar Bato MG, Froger JL, Harris AJL, Villeneuve N 2016 Monitoring an effusive eruption at Piton de la Fournaise using radar and thermal infrared remote sensing data insights into the October 2010 eruption and its lava flows. In Harris AJL, De Groeve T, Garel F, Carn SA eds Detecting. Geological Society, London, Special Publications, Modelling and Responding to Effusive Eruptions, p 426 Google Scholar Belart J, Magnusson J, Berthier E, Palsson F, Adalgeirsdottir G, Johannesson 2019 The geodetic mass balance of Eyjafjallajökull ice cap for 1945–2014 Processing guidelines and relation to climate. J Glaciol 65251395–409. Google Scholar Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P 2007 Remote sensing estimates of glacier mass balances in the Himachal Pradesh Western Himalaya, India. Remote Sens Environ 108327–338. Google Scholar Blackett M 2017 An Overview of Infrared Remote Sensing of Volcanic Activity. Journal of Imaging 3213. Google Scholar Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., ... & Ripepe, M. 2011. Tephra sedimentation during the 2010 Eyjafjallajökull eruption Iceland from deposit, radar, and satellite observations. Journal of Geophysical Research Solid Earth, 116B12.Calvari, S., Salerno, G. G., Spampinato, L., Gouhier, M., La Spina, A., Pecora, E., ... & Boschi, E. 2011. An unloading foam model to constrain Etna's 11–13 January 2011 lava fountaining episode. Journal of Geophysical Research Solid Earth, 116B11.Carrara A, Pinel V, Bascou P, Chaljub E, la Cruz-Reyna SD 2019 Post-emplacement dynamics of andesitic lava flows at volcan de Colima, Mexico, revealed by radar and optical remote sensing data. J Volcanol Geoth Res 3811–15Article Google Scholar Coppola D, Laiolo M, Cigolini C 2016a Fifteen years of thermal activity at Vanuatu’s volcanoes 2000–2015 revealed by MIROVA. J Volcanol Geotherm Res 3226–19Article Google Scholar Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M 2016b Enhanced volcanic hot-spot detection using MODIS IR data results from the MIROVA system. Geological Society, London, Special Publications 4261181–205Article Google Scholar de Michele M, Raucoules D, Arason Þ 2016 Volcanic plume elevation model and its velocity derived from Landsat 8. Remote Sens Environ 176219–224Article Google Scholar Deschamps-Berger C, Gascoin S, Berthier E, Deems J, Gutmann E, Dehecq A, Shean D, Dumont M 2020 Snow depth mapping from stereo satellite imagery in mountainous terrain evaluation using airborne laser-scanning data. Cryosphere 1492925–2940. Google Scholar Di Traglia F, De Luca C, Manzo M, Nolesini T, Casagli N, Lanari R, Casu F 2021 Joint exploitation of space-borne and ground-based multitemporal InSAR measurements for volcano monitoring The Stromboli volcano case study. Remote Sens Environ 260112441Article Google Scholar Dumont S, Sigmundsson F, Parks MM, Drouin VJ, Pedersen G, JĂłnsdĂłttir I, Oddsson B 2018 Integration of SAR data into monitoring of the 2014–2015 Holuhraun eruption, Iceland contribution of the Icelandic volcanoes supersite and the FutureVolc projects. Front Earth Sci 6231Article Google Scholar Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F 2012 Measuring large topographic change with InSAR Lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet Sci Lett 335216–225Article Google Scholar Flynn LP, Wright R, Garbeil H, Harris A, Pilger E 2002 A global thermal alert system using MODIS initial results from 2000–2001. Advances in Environmental Monitoring and Modelling 1137–60 Google Scholar Ganci G, Vicari A, Cappello A, Del Negro C 2012 An emergent strategy for volcano hazard assessment from thermal satellite monitoring to lava flow modeling. Remote Sens Environ 119197–207Article Google Scholar Ganci, G., Cappello, A., Bilotta, G., Corradino, C., Del Negro, C., 2019a. Satellite-based reconstruction of the volcanic deposits during the December 2015 Etna eruption. Data4, 120. 10 .3390 / L, Nuth C, KÀÀb A, McNabb R, Galland O 2017 MMASTER Improved ASTER DEMs for Elevation Change Monitoring. Remote Sensing 97704. Google Scholar Gouhier M, Harris A, Calvari S, Labazuy P, GuĂ©henneux Y, Donnadieu F, Valade S 2012 Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bull Volcanol 744787–793Article Google Scholar Gouhier M, GuĂ©henneux Y, Labazuy P, Cacault P, Decriem J, Rivet S 2016 HOTVOLC A web-based monitoring system for volcanic hot spots. Geological Society, London, Special Publications 4261223–241Article Google Scholar Gouhier M, Deslandes M, GuĂ©henneux Y, Hereil P, Cacault P, Josse B 2020 Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 118864Article Google Scholar Harris A 2013 Thermal Remote Sensing of Active Volcanoes. Cambridge University Press, Cambridge, UKBook Google Scholar Höhle J, Höhle M 2009 Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64398–406. Google Scholar Kelfoun K, Santoso AB, Latchimy T, Bontemps M, Nurdien I, Beauducel F, Gueugneau V 2021 Growth and collapse of the 2018–2019 lava dome of Merapi volcano. Bull Volcanol 8321–13Article Google Scholar Kubanek J 2017 Westerhaus, Malte, Heck, Bernhard, TanDEM-X Time Series Analysis Reveals Lava Flow Volume and Effusion Rates of the 2012–2013 Tolbachik. Kamchatka Fissure Eruption, Journal of Geophysical Research Solid Earth 122107754–7774 Google Scholar Kubanek J, Westerhaus M, Schenk A, Aisyah N, Brotopuspito KS, Heck B 2015 Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens Environ 16416–25Article Google Scholar Labazuy P, Gouhier M, Harris A, GuĂ©henneux Y, Hervo M, BergĂšs JC, Rivet S 2012 Near real-time monitoring of the April–May 2010 Eyjafjallajökull ash cloud an example of a web-based, satellite data-driven, reporting system. Int J Environ Pollut 481–4262–272Article Google Scholar Laiolo, M.; Ripepe, M.; Cigolini, C.; Coppola, D.; Della Schiava, M.; Genco, R.; Innocenti, L.; Lacanna, G.; Marchetti, E.; Massimetti, F.; et al. Space-and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano. Remote Sens. 2019, 11, 1182Marzano FS, Barbieri S, Vulpiani G, Rose WI 2006 Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans Geosci Remote Sens 44113235–3246Article Google Scholar Massimetti F, Coppola D, Laiolo M, Valade S, Cigolini C, Ripepe M 2020 Volcanic Hot-Spot Detection Using SENTINEL-2 A Comparison with MODIS–MIROVA Thermal Data Series. Remote Sensing 125820. Google Scholar de Michele, M.; Raucoules, D.; Corradini, S.; Merucci, L.; Salerno, G.; Sellitto, P.; Carboni, E. Volcanic Cloud Top Height Estimation Using the Plume Elevation Model Procedure Applied to Orthorectified Landsat 8 Data. Test Case 26 October 2013 Mt. Etna Eruption. Remote Sens. 2019, 11, 785. Y. Barnie, B., Amigo, A., Kelfoun, K., Flores, F., Franco, L., Cardona, C., Cordova, L., Toloza, T., Monitoring and forecasting hazards from a slow growing lava dome using aerial imagery, tri-stereo PlĂ©iades-1A/B imagery and PDC numerical simulation, Earth and Planetary Science Letters, Volume 564, C, KÀÀb A 2011 Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5271–290. Google Scholar Pedersen GBM, Belart JMC, Óskarsson BV, Gudmundsson MT, Gies N, HögnadĂłttir Th, HjartardĂłttir AR, Pinel V, Berthier E, DĂŒrig T, Reynolds HI, Hamilton CW, Valsson G, Einarsson P, Ben-Yehosua D, Gunnarsson D, Oddsson, B. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption Results from near real-time photogrammetric monitoring. Geophisical Research Letters in Press. Google Scholar Peltier A, Ferrazzini V, Di Muro A, Kowalski P, Villeneuve N, Richter N, Ramsey M 2021 Volcano crisis management at Piton de la Fournaise La RĂ©union during the COVID-19 lockdown. Seismological Society of America 92138–52 Google Scholar Pierrot-Deseilligny M 2011 Clery I. Apero, an Open Source Bundle Adjustment Software for Automatic Calibration and Orientation of Set of Images 385269–276 Google Scholar Pinel, V., Putra, R., Solikhin, A., Beauducel, F., Santoso, A. B., Humaida, H. Tracking the evolution of the Merapi volcano crater area by high-resolution satellite, Geophysical Research Abstracts, Vol. 22, EGU2020–5415, 2020, EGU General Assembly MP 2014 Time-averaged discharge rate of subaerial lava at Klauea Volcano, Hawai’i, measured from TanDEM-X interferometry Implications for magma supply and storage during 2011–2013. J Geophys Res Solid Earth 1195464–5481Article Google Scholar Richter N, Froger JL 2020 The role of Interferometric Synthetic Aperture Radar in detecting, mapping, monitoring, and modelling the volcanic activity of Piton de la Fournaise. La RĂ©union A Review Remote Sensing 1261019 Google Scholar Rupnik, E., Daakir, M. and Pierrot-Deseilligny, M. P. 2017. Micmac–a free, open-source solution for pho- togrammetry. Open Geospatial Data, Software and Standards, 211–9. A, Leadbetter S, Theys N, Carboni E, Witham CS, Stevenson JA, Shepherd J 2015 Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at BĂĄrarbunga Iceland. Journal of Geophysical Research Atmospheres 120189739–9757Article Google Scholar Scollo, S., Prestifilippo, M., Bonadonna, C., Cioni, R., Corradini, S., Degruyter, W., ... & Pecora, E. 2019. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sensing, 1124, DE, Alexandrov O, Moratto ZM, Smith BE, Joughin IR, Porter C, Morin P 2016 An automated, open-source pipeline for mass production of digital elevation models DEMs from very-high-resolution commercial stereo satellite imagery. ISPRS J Photogramm Remote Sens 116101–117. Google Scholar Shean DE, Bhushan S, Montesano P, Rounce DR, Arendt A, Osmanoglu B 2020 A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front Earth Sci 7363. Google Scholar Shevchenko, Alina V., Dvigalo, Viktor N., Zorn, Edgar U., Vassileva, Magdalena S., Massimetti, Francesco, Walter, Thomas R., Svirid, Ilya Yu., Chirkov, Sergey A., Ozerov, Alexey Yu., Tsvetkov, Valery A., Borisov, Ilya A, 2021 Constructive and Destructive Processes During the 2018–2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data, Frontiers in Earth Science, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., ... & Arellano, S. 2020. Evidences of plug pressurization enhancing magma fragmentation during the September 2016 basaltic eruption at Piton de la Fournaise La RĂ©union Island, France. Geochemistry, Geophysics, Geosystems, 212, S, Ley A, Massimetti F, D’Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter TR 2019 Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence The MOUNTS Monitoring System. Remote Sensing 11131528. Google Scholar Vicari, A., Bilotta, G., Bonfiglio, S., Cappello, A., Ganci, G., HĂ©rault, A., ... & Del Negro, C. 2011. LAV HAZARD a web-GIS interface for volcanic hazard assessment. Annals of Geophysics, 545.Wright R, Blake S, Harris AJ, Rothery DA 2001 A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 1922223–233Article Google Scholar Wright R, Flynn L, Garbeil H, Harris A, Pilger E 2002 Automated volcanic eruption detection using MODIS. Remote Sens Environ 821135–155Article Google Scholar Download referencesAcknowledgementsHOTVOLC data processing performed by MG and YG was supported by French CNRS-INSU through the National Observation Service in Volcanolgy SNOV, and the French Space Agency named Centre National d’Études Spatiales CNES. PlĂ©iades images have been acquired thanks to the CNES via CIEST2 © CNES 2021, Distribution Airbus DS, CIEST2 is part of ForMTer and supported by ISDeform National Observation Service. VP was supported by the CNES project MagmaTrack. We also thank the handling editor for helpful data processing associated with SV’s work was funded thanks to the PAPIIT project informationAuthors and AffiliationsUniversitĂ© Clermont Auvergne, CNRS, F-63000, Clermont-Ferrand, IRD, OPGC, LMV, FranceMathieu Gouhier & Yannick GuĂ©henneuxVirginie Pinel- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceVirginie PinelNational Land Survey of Iceland, Akranes, IcelandJoaquĂ­n M. C. BelartInstitute of Earth Sciences, University of Iceland, ReykjavĂ­k, IcelandJoaquĂ­n M. C. Belart & Magnus Tumi GudmundssonBRGM, Risks and Prevention Department, Geophysical Imagery and Remote Sensing Unit, 3 avenue Claude Guillemin, 45060, OrlĂ©ans, FranceMarcello De Michele & Daniel RaucoulesCNES Centre National d’Études Spatiales, Toulouse, FranceCatherine Proy & Claire TinelLEGOS UniversitĂ© de Toulouse, CNES, CNRS, UPS, Toulouse, IRD, FranceEtienne BerthierIcelandic Institute of Natural History,, GarabĂŠr, IcelandBirgir V. ÓskarssonUniversity Grenoble Alpes, University Savoie Mont Blanc, CNRS, UGE, ISTerre, Grenoble, IRD, FranceShan GremionDepartamento de VulcanologĂ­a, Instituto de GeofĂ­sica, Universidad Nacional AutĂłnoma de MĂ©xico UNAM, Mexico City, MexicoSĂ©bastien ValadeDepartment of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125, Turino, ItalyFrancesco MassimettiDepartment of Civil Protection and Emergency Management, National Commissioner of the Icelandic Police, ReykjavĂ­k, IcelandBjorn OddssonAuthorsMathieu GouhierYou can also search for this author in PubMed Google ScholarVirginie PinelYou can also search for this author in PubMed Google ScholarJoaquĂ­n M. C. BelartYou can also search for this author in PubMed Google ScholarMarcello De MicheleYou can also search for this author in PubMed Google ScholarCatherine ProyYou can also search for this author in PubMed Google ScholarClaire TinelYou can also search for this author in PubMed Google ScholarEtienne BerthierYou can also search for this author in PubMed Google ScholarYannick GuĂ©henneuxYou can also search for this author in PubMed Google ScholarMagnus Tumi GudmundssonYou can also search for this author in PubMed Google ScholarShan GremionYou can also search for this author in PubMed Google ScholarDaniel RaucoulesYou can also search for this author in PubMed Google ScholarSĂ©bastien ValadeYou can also search for this author in PubMed Google ScholarFrancesco MassimettiYou can also search for this author in PubMed Google ScholarBjorn OddssonYou can also search for this author in PubMed Google ScholarContributionsMG designed the paper and planned the research. VP, SG, JB and EB processed PlĂ©iades data for lava volume and effusion rates. MdM and DR processed PlĂ©iades data for volcanic plume study. CP and CT helped with fast PlĂ©iades acquisition through the CIEST2 consortium. MG and YG processed IR data from HOTVOLC platform MSG-SEVIRI. MTG, BO and BO led the operational survey for airborne data acquisition and processing. SV and FM processed sentinel-2 authorCorrespondence to Mathieu declarations Competing interest The authors declare that they have no competing interests. Additional informationPublisher's NoteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver applies to the data made available in this article, unless otherwise stated in a credit line to the data. Reprints and PermissionsAbout this articleCite this articleGouhier, M., Pinel, V., Belart, et al. CNES-ESA satellite contribution to the operational monitoring of volcanic activity The 2021 Icelandic eruption of Mt. Fagradalsfjall. J Appl. Volcanol. 11, 10 2022. citationReceived 17 September 2021Accepted 11 July 2022Published 13 August 2022DOI sensingPlĂ©iades imagesInfrared monitoringLava
LePiton de la Fournaise est un volcan basaltique de point chaud situĂ© au sud-est de l’Ile de la RĂ©union (OcĂ©an Indien). Volcan actif, son histoire Ă©ruptive a dĂ©butĂ© il y a environ 500 000 ans. Il produit des laves fluides Ă  l’origine d’éruptions majoritairement effusives (avec Ă©missions de fontaines de lave et de coulĂ©es de lave) dont la frĂ©quence est en moyenne
Guide de voyageRĂ©unionHautes Plaines - VolcanPiton De La Fournaise Culminant Ă  2 632 m d'altitude, le Piton de la Fournaise, emblĂšme de l'Ăźle de la RĂ©union, le site naturel des Hautes-Terres le plus visitĂ©, est un volcan particuliĂšrement actif qui a enregistrĂ© au cours des dix derniĂšres annĂ©es, une Ă©ruption tous les neuf mois, en moyenne, produisant d'importantes quantitĂ©s de lave. Vous ĂȘtes ici au milieu de l'OcĂ©an pacifique c'est le paradis et une nature luxuriante et vivante, des reliefs impressionnants et des paysages Ă  couper la souffle. Des pitons, des cascades, des plages, des forĂȘts c'est une profusion de sites envoutants qui vous attendent sur cette Ăźle des DOM-TOM. A Bourg-Murat, faites escale pour visiter la CitĂ© du Volcan qui montre deux visage du Piton de la Fournaise, le premier, fait de soufre et de lĂ©gendes ancestrales, le second donne la parole aux scientifiques du monde entier qui viennent Ă©tudier sa roche. Un musĂ©e ludique Ă  dĂ©couvrir en famille pour devenir incollable sur la vulcanologie. Le massif du Piton de la Fournaise couvre prĂšs d’un tiers de la surface de l’üle. Sur ses pentes, la vĂ©gĂ©tation renait rapidement aprĂšs le passage de la roche en fusion. Viennent les lichens, Ce sont les lichens, puis les fougĂšres, des arbustes et, progressivement, la forĂȘt gagne du terrain et reprend ses droits. Les fous de course en montagne viennent pour la Diagonale des Fous, grand trail de la Diagonale des Fous. Plusieurs randonnĂ©es plus sages permettent de s'approcher des cratĂšres. Et un lever de soleil depuis le pas de Bellecombe accessible en voiture sur le Piton de la Fournaise est dĂ©jĂ  un grand moment ! Lire la suite Que visiter Ă  PITON DE LA FOURNAISE ? Adresses FutĂ©es de PITON DE LA FOURNAISE Quand partir Ă  PITON DE LA FOURNAISE ?La haute saison touristique Ă  l'Ăźle ,de la RĂ©union s'Ă©tend d'octobre Ă  avril, du moins pour les MĂ©tropolitains qui viennent Ă  La RĂ©union pour le soleil quand chez eux il fait froid. Mais il faut compter avec les vacances scolaires des RĂ©unionnais, qui remplissent avions et hĂŽtels et font augmenter les prix, notamment du 20 dĂ©cembre Ă  fin janvier et de mi-juillet Ă  mi-aoĂ»t. Ces deux effets cumulĂ©s font de dĂ©but novembre Ă  fin janvier la pĂ©riode oĂč la rĂ©servation est la plus impĂ©rative pour tout hĂ©bergement, voiture ou avion, car sinon il ne reste que le plus cher. On peut dĂ©couvrir le Piton de la Fournaise toute l'annĂ©e, mais vous Ă©viterez les pluies si vous prĂ©voyez votre sĂ©jour en dehors des trois premiers mois de l'annĂ©e. Pour le spectacle d'une Ă©ruption ce sera selon votre chance ! Si vous venez le troisiĂšme week-end d'octobre c'est le Grand Raid, reine des courses en montagne, avec sa fameuse Diaronale des Fous, ultra-rail rĂ©putĂ©e pour ĂȘtre l'une des plus difficile au monde avec ses 165 km, un dĂ©nivelĂ© positif d'environ 10 000 m et autour de dĂ©nivelĂ© nĂ©gatif ! Dans un tout autre registre, c'est la Fe^te du miel vert en janvier, Ă  la PLaine-des-Cafres qui met Ă  l'honneur les produits locaux, particuliĂšrement les miels et les produits laitiers. MĂ©tĂ©o Budget FormalitĂ©s SantĂ© MĂ©tĂ©o en ce moment MĂ©tĂ©o Ă  l'annĂ©e Comme l'ensemble de l'Ăźle de la RĂ©union, le Piton de la Fournaise bĂ©nĂ©ficie d'un climat tropical adouci par la prĂ©sence de l'ocĂ©an Indien et des alizĂ©s. Le Piton de la Fournaise bĂ©nĂ©ficie d'un micro-climat d'une agrĂ©able fraicheur du fait de l'altitude. Le soleil y brille de mai Ă  novembre. Des pluies adviennent de janvier Ă  mars. BudgetPour la Diagonale des fous prenez vous Ă  l'avance pour avoir un vol vers 800 €, sinon ce sera plutĂŽt 1 200 € ! L'inscription Ă  la course coĂ»te 170 €. Vous pouvez vous loger pour 30 € par personne et par nuit. Et si vous avez une cuisine avec 10 € d'ingrĂ©dients vous concoctez un festin. Plus chers, les hĂŽtels de charme et les bons restaurants ne manquent pas. Location de voiture Ă  partir de 40 € par jour. Compter environ 70 € par personne pour une rando au Piton avec guide, repas compris. FormalitĂ©sDocuments obligatoires pour les ressortissants français ou de l’Union EuropĂ©enne carte d’identitĂ© ou passeport en cours de validitĂ©. Pour les ressortissants des pays Ă©trangers passeport en cours de validitĂ©, visa le cas Ă©chĂ©ant et un titre de transport retour ou une continuation de voyage. Selon la lĂ©gislation en vigueur. SantĂ©Vous devez ĂȘtre Ă  jour de votre vaccin contre l'hĂ©patite A. Il n'y a pas de paludisme Ă  la RĂ©union. Le volcan Piton de la Fournaise est un volcan actif. Les autoritĂ©s rĂ©glementent de maniĂšre stricte l’accĂšs au volcan. Vous voulez randonner ? Ne partez jamais seul et engagez toujours un guide expĂ©rimentĂ© travaillant pour une entreprise connue, souscrivez une assurance voyage qui couvre des services de secours par hĂ©licoptĂšre et d’évacuation mĂ©dicale, assurez-vous d’ĂȘtre physiquement et mentalement ! apte Ă  relever les dĂ©fis de votre ascension. Comment partir Ă  PITON DE LA FOURNAISE ? Nos conseils & astuces Voyages organisĂ©s Partir seule Se dĂ©placer Des agences sur place ou depuis la mĂ©tropole proposent des sĂ©jours clĂ©s en main pour participer au Grand Raid du Piton de la Fournaise ou pour un sĂ©journer dans les Grande Plaines avec randonnĂ©es Ă  la dĂ©couverte du Piton de la Fournaise. C'est une solution qui vous simplifiera la tache pour le Grand Raid et sĂ©curitaire pour arpenter les pentes du Piton. Il vous faudra dĂ©barquer Ă  l'aĂ©roport de Saint Pierre/TrĂ©fonds, le plus proche du Piton. Vous pouvez louer une voiture pour vous approcher et tout d'abord rejoindre Bourg Murat qui ouvre sur la piste forestiĂšre jusqu'au Pas de Bellecombe Ă  30 km. LĂ  vous pouvez mettre vos chaussures de randonnĂ©e et poursuivre en grimpant Ă  pied. Attention pour participer au Grand Raid il vous faut ĂȘtre un sportif de raid bien entrainĂ© et ĂȘtre Ă©quipĂ© plus simple est de louer une voiture en arrivant Ă  l'aĂ©roport. La formule est bien rodĂ©e. Vous pouvez aussi louer un scooter moins cher ou prendre un taxi plus cher. En voyage organisĂ© vous montez dans le minibus de votre groupe. Quant aux raiders, il va sans dire qu'il feront la majoritĂ© de leurs dĂ©placement... en courant ! Organiser son voyage Ă  PITON DE LA FOURNAISE Transports RĂ©servez vos billets d'avions Location voiture Taxi et VTC Location bateaux HĂ©bergements & sĂ©jours Trouver un hĂŽtel Location de vacances Echange de logement Trouvez votre camping RĂ©servez vos vacances au ski Services / Sur place RĂ©servez une table ActivitĂ©s & visites Voyage sur mesure Apprendre une langue Ă©trangĂšre Les circuits touristiques Ă  PITON DE LA FOURNAISE Guide LA RÉUNION LA RÉUNION 2022 €2022-01-12384 pages Reportages & actualitĂ©s de PITON DE LA FOURNAISE Autres destinations Ă  proximitĂ© de PITON DE LA FOURNAISE Litinerario piĂč corto ma intenso per scoprire l’isola di RĂ©union ed i suoi angoli piĂč affascinanti August 14 , 2022. Italy , Stromboli In the early morning of August 12, and more precisely between 530 and 630 a violent downpour hit the island of Stromboli. As indicated by the weather station of Scari, managed by the INGV with the collaboration of the local association for social promotion Attiva Stromboli », more than 60 millimeters of rain fell in one hour, and more than half of between them in just 15 minutes, between 545 and 600 as shown in the graph below. To make a comparison that gives an idea of the intensity of this event, in just 15 minutes the same amount of rain fell as that which falls on Stromboli on average throughout the month of May. Heavy rains of this type, which in the past were classified as exceptional events, are becoming more and more common, which is due to the overheating of the ground and the atmosphere induced by the ongoing climate changes. This intense rain set off a vast flow of mud and debris, which broke loose from the slopes above and invaded the city’s roads, homes and businesses, causing massive damage. The disastrous flooding is the result of the combined effect of this intense rain with the total denudation of the ground which occurred following the forest fire of May 25, which completely destroyed the vegetation cover of the slopes at the above the city. The Vallonazzo, the most important valley above the town of Stromboli in the background, completely stripped of vegetation due to the forest fire of May 25. The plant cover in fact acts as a buffer that preserves the soil from the direct action of rain, extending its stabilizing action into the immediate subsoil thanks to the roots, the interweaving of which creates a real network that helps to keep the soil together. different volcanic elements of which the soil of Stromboli is composed even very fine ash, slag, pumice and rock fragments even of large dimensions. Once the vegetation cover has disappeared as a result of the fire, the mechanical energy released by the impact of raindrops on bare ground tends to separate its tiniest components, such as volcanic ash, forming mudslides and debris flowing down slopes incorporate other, even coarser materials, gradually increasing their erosive capacity. Intense rains and increasingly frequent forest fires due to climate change-induced overheating are among the main causes of hydrogeological instability. These phenomena are of particular importance in territorial areas which, by their intrinsic nature, are particularly exposed to instability, such as active volcanic areas, which confirms the need for appropriate and effective monitoring and protection of risky slopes. Source INGV Ambiente . Read the article Photos INGV , Stromboli Stati D’animo. Indonesia , Merapi Report on the activity of Mount Merapi from August 5 to 11, 2022, August 12, 2022. RESULTS OF OBSERVATIONS Visual The weather around Mount Merapi is generally sunny in the morning and evening, while it is foggy in the afternoon. White smoke, thin to medium thickness, low pressure and 100 m high was observed from the Mount Merapi Babadan observation post on August 11, 2022 at 0606 WIB. This week, 43 lava avalanches were observed in the Southwest, descending the Bebeng River with a maximum slip distance of 1,500 m. In the Southwest dome, the growth of the dome is observed, the volume of the dome is calculated at 1,664,000 m3. As for the central dome, it is 2,772,000 m3. Seismicity This week, the seismicity on Mount Merapi recorded 13 shallow volcanic earthquakes VTB, 582 multiple phase earthquakes MP, 633 avalanche earthquakes RF, 159 emission earthquakes DG 5 tectonic earthquakes TT. The intensity of this week’s earthquake is still quite high. Deformation Mount Merapi’s deformation that was monitored using EDM and GPS this week showed no significant changes. Rain and lahars This week, no rain was reported at the Mount Merapi observation post. There are no reports of lahars or additional flow in the rivers that originate on Mount Merapi. Conclusion Based on the results of visual and instrumental observations, it is concluded that Volcanic activity at Mount Merapi is still quite high in the form of effusive eruption activity. The state of the activity is defined at the SIAGA » level. Source BPPTKG Photo Yohannes Tyas Galih Jati La RĂ©union , Piton de la Fournaise Piton de la Fournaise activity Seismicity In July 2022, the OVPF-IPGP recorded at the level of the Piton de la Fournaise massif in total ‱ 29 superficial volcano-tectonic earthquakes 0 to km above sea level under the summit craters; ‱ 2 deep earthquakes below sea level; ‱ 1178 landslides in the CratĂšre Dolomieu, the ramparts of the Enclos FouquĂ© and the Piton de Crac, and the RiviĂšre de l’Est. The month of July 2022 will have been marked by low seismicity at the level of Piton de la Fournaise with an average of 1 superficial volcano-tectonic earthquake per day. Most of these events were located under the Dolomieu crater. Shots of the broken River East on July 25, 2022 © SAG-PGHM. The month of July was also marked by many 1178 landslides in the CratĂšre Dolomieu, the ramparts of the Enclos FouquĂ© and at the cassĂ© of RiviĂšre de l’Est . The majority of the collapses and the most important take place in the sector of the cassĂ© of RiviĂšre de l’Est. An aerial reconnaissance carried out by the Air Section of the Gendarmerie and the PGHM on July 25 shows the presence of a large scree cone at the foot of the cassĂ© of RiviĂšre de l’Est. CO2 concentration in the ground Following the eruption of December 2020, a continuous increase in CO2 emissions from the ground is recorded at the level of the distal sites Plaine des Cafres sectors but also proximal GĂźte du volcan. The last eruption took place from December 22, 2021 to January 17, 2022. From December 27, 2021, the eruption was associated with a rapid and unprecedented increase in CO2 emissions from the ground on the station proximal to the GĂźte and with a trend reversal on the distal stations. The inversion observed at the distal stations lasted until January 7, 2022, then the concentrations remained stable at intermediate values ​​until the end of January. On the site proximal to the GĂźte, a sudden drop in flux with very low CO2 values was detected after January 3, 2022. At the end of the eruption a new phase of increase was recorded, but with a higher rate. weak. The strong fluctuations observed during the month of February are certainly linked to environmental influences due to two cyclonic events. A further increase was recorded in both distal and near field at the end of February with a sharp acceleration in mid-March 2022. This phase of increase lasted until May 5 in the distal field and until May 19 in the near field. It should be noted that the isotopic analysis of the gases sampled both in the distal field PNRN, Plaine des Palmistes and in the proximal field shows a marked increase in the magmatic contribution over the period March-April 2022. Source OVPF. Lire l’article Photos © SAG-PGHM , G Vitton. Etats- Unis , Yellowstone 44°25’48 » N 110°40’12 » W, Summit Elevation 9203 ft 2805 m Current Volcano Alert Level NORMAL Current Aviation Color Code GREEN Recent Work and News Yellowstone Volcano Observatory scientists continued with a busy field schedule this summer. In July, additional semipermanent GPS stations were installed, bringing the total number of stations deployed to 17. These sensors, which provide seasonal densification of the existing continuous GPS network, will be removed in September/October, before the snow starts to accumulate, so that the data can be downloaded and analyzed. Steamboat Geyser did not erupt during the month of July the most recent eruption occurred on June 20. There have been 8 major water eruptions of the geyser in 2022. Seismicity During July 2022, the University of Utah Seismograph Stations, responsible for the operation and analysis of the Yellowstone Seismic Network, located 59 earthquakes in the Yellowstone National Park region. The largest event of the month was a minor earthquake of magnitude located about 14 miles south-southwest of Mammoth Hot Springs in Yellowstone National Park on July 30 at 144 AM MDT. The event was part of a small swarm of 13 earthquakes that occurred during July 29–30. Earthquake sequences like these are common and account for roughly 50% of the total seismicity in the Yellowstone region. Yellowstone earthquake activity remains at background levels. Ground deformation Conitinuous GPS stations in Yellowstone Caldera and near Norris Geyser Basin recorded a few millimeters of uplift less than half an inch since the start of summer. This deformation is a result of snowmelt that percolates into the ground and causes the surface to swell slightly, like a sponge. The same summer-only signal is detected annually and is superimposed on the overall trend of caldera subsidence, which has been ongoing since 2015 at a rate of a few centimeters 1–2 inches per year. Source YVO. Photo Mammoth Hot Springs ,Brocken Inaglory. New Zealand , White Island Whakaari/White Island Loss of near real-time monitoring. Minor volcanic unrest continues. Published Wed Aug 10 2022 200 PM Near real-time monitoring of Whakaari has been lost with the failure of the last surviving seismometer and pressure sensor on the island. We continue to monitor via other, less-frequent methods. The Volcanic Alert Level for Whakaari/White Island remains at Level 1. The Aviation Colour Code also remains at Green. The monitoring network at Whakaari consisted of two sites with earthquake and pressure sensors to detect explosive airwaves, three cameras, two SO2 sulphur dioxide gas scanners and two GNSS antenna for measuring ground deformation. Since the 9 December 2019 eruption, the on-island network has not been serviced and power supplies, sensors and cameras have degraded or failed over time. Our near real-time capability has been largely reliant on the on-island earthquake and pressure sensors. The first of these failed in April 2021 and the second failed late last week. The loss of the second earthquake and pressure sensor reduces our ability to closely monitor the volcano in near real-time. Until we are able to service our on-island equipment and power supplies, we will be increasing the frequency of our gas and observation flights to the island. Our most recent gas observation flight occurred two weeks ago, and the results indicated the level of activity at the island had remained low, with normal fumarole and gas emissions. Since that flight, the seismicity had remained low, and no deformation signals had been recorded. These observations are consistent with low levels of volcanic unrest. The Volcanic Alert Level remains at Level 1 and the Aviation Colour Code remains Green. Source Geonet / Geoff Kilgour / Duty Volcanologist. Photo Geonet. Ecuador , Sangay DAILY REPORT OF THE STATE OF SANGAY VOLCANO, Saturday August 13, 2022. Information Geophysical Institute – EPN. Surface activity level High, Surface trend Ascending. Internal activity level High, Internal trend No change. Seismicity From August 12, 2022, 1100 to August 13, 2022, 1100 Explosion EXP 468 Long Periods LP 71 Emission Tremors TREMI 83 Rains / Lahars There are no reports of lahars. The weather conditions have been very good for the past 24 hours. Emission / ash column With the increase in surface activity recorded since yesterday, continuous emissions of ash at low altitude <2km above the crater have been observed. The ash cloud extends west and southwest, crossing the provinces of Chimborazo, BolĂ­var, Cañar, Azuay and Guayas. So far, ashfall has been reported in the provinces of Chimborazo Cebadas, Palmira, Chunchi and Alausi and Guayas Guayaquil, Milagro and SamborondĂłn. At the moment, the cloud is low < 2 km and continuous and, due to good weather conditions, it could continue to cause light to moderate ash fall in the aforementioned provinces. Other Monitoring Parameters The FIRMS system records 57 thermal alerts over the past 24 hours. The MIROVA system records 1 very high 4051 MW, 1 high 764 MW and 1 low thermal alert during the last 24 hours. Gas The Mounts system reports tons of SO2, with data on 2022-08-12 at 152 TL. Observation Yesterday, there was an increase in the internal and superficial activity of the Sangay volcano, with the increase in seismic energy, the emission of a new lava flow was highlighted on the southeast flank , the same one that can be seen on the images shared by the ECU-911 and the satellites. Due to the good weather conditions, the sounds coming from the volcano were heard in various sectors of the province of Guayas and it was possible to see the incandescence from the city of Macas. In addition, due to good weather conditions, several videos of commercial flights and photographs show the trajectory of the ash cloud towards the West. Alert level Orange. Information, Saturday, August 13, 2022, Updated 130 TL. The ash cloud from the Sangay volcano extends to the province of Guayas. This emission has already caused ash falls in the province of Chimborazo and Guayas yesterday and today in the province of Chimborazo AlausĂ­. For the moment, the cloud is diffuse and could cause a slight ash fall in Guayaquil. With the right weather conditions, this low-altitude emission managed to travel more than 200 km to the west and southwest of the volcano. This phenomenon has been recurrent during the current eruptive period which began in May 2019. The IG-EPN continues to monitor the event and will inform in a timely manner if any changes in the monitoring signals are detected. Source IGEPN Photos Robinsky , Volcan Sangay FB.
\n\n \n\n \n camera volcan piton de la fournaise
Observatoirevolcanologique du Piton de la Fournaise. Actualités; Le Piton de la Fournaise; Les réseaux d'observation. Le réseau sismologique; Les réseaux de déformation; Le réseau géochimique; Le réseau de caméras; Le réseau de pluviomÚtres; L'observatoire Le réseau de caméras Le réseau de caméras de l'OVPF (©OVPF/IPGP) Infos pratiques . Infos pratiques
PlanĂšte Pour la deuxiĂšme fois de l’annĂ©e, le volcan, un des plus actifs au monde, a donnĂ© de premiers signes de rĂ©veil dans la nuit de mardi Ă  mercredi. Il est l’un des volcans les plus actifs au monde. AprĂšs une premiĂšre Ă©ruption en avril qui avait durĂ© six semaines, le piton de la Fournaise, sur l’üle de La RĂ©union, est entrĂ© en Ă©ruption pour la deuxiĂšme fois de l’annĂ©e mercredi 22 dĂ©cembre Ă  3 h 30, heure locale 0 h 30, heure de Paris, indique l’observatoire volcanologique. Au moins trois fissures Ă©ruptives se sont ouvertes sur le flanc sud du volcan dans l’enclos la caldera centrale du volcan ont constatĂ© les volcanologues. L’éruption a lieu dans une zone totalement inhabitĂ©e et ne prĂ©sente pas de danger pour la population Alternant les phases de sismicitĂ© et de calme depuis plusieurs semaines, le piton de la Fournaise a donnĂ© ses premiers signes de rĂ©veil vers 1 h 15, heure locale 23 h 15 mardi, heure de Paris. Cette crise sismique est accompagnĂ©e de dĂ©formation rapide », signe que le magma est en train de quitter le rĂ©servoir magmatique et se propage vers la surface » soulignait alors l’observatoire volcanologique. Il prĂ©cisait qu’ une Ă©ruption est probable Ă  brĂšve Ă©chĂ©ance dans les prochaines minutes ou heures ». Le piton de la fournaise s’est rĂ©veillĂ© le jour de la fĂȘte nationale. Tout autour du volcan, l’üle classĂ©e au patrimoine mondial de l’Unesco est un joyau naturel qui attire de nombreux touristes. Romain Philippon, qui y rĂ©side, l’a explorĂ©e avec son appareil photo. La RĂ©union dĂ©voile un relief abrupt, façonnĂ© par l’érosion et ses deux plus importants volcans, le piton des Neiges et le piton de la Fournaise, encore en activitĂ©. A 1 400 m d’altitude, les Hauts de l’üle dissimulent le cirque de Mafate, qui abrite ici le village de la Nouvelle. Romain Philippon pour M Le magazine du Monde La fĂȘte des Goyaviers, qui a lieu au mois de juin sur la Plaine-des-Palmistes. Romain Philippon pour M Le magazine du Monde Au deuxiĂšme tour de l’électionprĂ©sidentielle, La RĂ©union a votĂ© Ă  60,26 % pour Emmanuel Macron, et Ă  39,74 % pour Marine Le Pen, soit prĂšs de 5 % de plus que la moyenne nationale pour le FN. Ici, des militantes lors d’un meeting de Nicolas Sarkozy en 2012. Romain Philippon pour M Le magazine du Monde Un gĂźte nichĂ© dans la forĂȘt primaire de BĂ©louve domine le cirque de Salazie, des rĂ©gions qui restent difficiles d’accĂšs. Romain Philippon pour M Le magazine du Monde La plage de Trou d’eau, Ă  Saline-les-Bains. TrĂšs apprĂ©ciĂ©e des locaux, elle doit son nom Ă  un puits naturel ouvert sur un tunnel de lave rempli d’eau. Romain Philippon pour M Le magazine du Monde A La RĂ©union, le brassage des populations fait coexister les cultes religieux. Si la majoritĂ© de la population est de confession chrĂ©tienne, un quart des habitants pratique l’hindouisme. L’üle compte aussi des musulmans et des bouddhistes. Ici, le cimetiĂšre de Saint-Gilles. Romain Philippon pour M Le magazine du Monde Marcel, un habitant de Saint-Leu, sur la cĂŽte ouest de l’üle. Romain Philippon pour M Le magazine du Monde Avant la culture de la canne Ă  sucre, le tourisme est la premiĂšre ressource Ă©conomique de l’üle. Visite en bus sur la route d’Îlet-Ă -Cordes, en plein cƓur du cirque de Cilaos. Romain Philippon pour M Le magazine du Monde Un pique-nique le dimanche, aux cascades d’Anse, sous une immense cocoteraie. Romain Philippon pour M Le magazine du Monde Le centre commercial SacrĂ©-CƓur, de la ville du Port. Romain Philippon pour M Le magazine du Monde SituĂ© dans le sud-est de La RĂ©union, le piton de la Fournaise est entrĂ© en Ă©ruption Ă  une vingtaine de reprises au cours des dix derniĂšres annĂ©es. Les Ă©ruptions du volcan de La RĂ©union sont qualifiĂ©es d’effusives ou de type hawaĂŻen. La lave s’écoule en majeure partie sur la surface du volcan, Ă  la diffĂ©rence des Ă©ruptions explosives qui crachent des nuages de cendres haut dans le ciel. Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item / Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Morgan fache/Collectif Item / Morgan Fache/Collectif Item Morgan fache/Collectif Item/Morgan Fache/Collectif Item Le Monde avec AFP Vous pouvez lire Le Monde sur un seul appareil Ă  la fois Ce message s’affichera sur l’autre appareil. DĂ©couvrir les offres multicomptes Parce qu’une autre personne ou vous est en train de lire Le Monde avec ce compte sur un autre appareil. Vous ne pouvez lire Le Monde que sur un seul appareil Ă  la fois ordinateur, tĂ©lĂ©phone ou tablette. Comment ne plus voir ce message ? En cliquant sur » et en vous assurant que vous ĂȘtes la seule personne Ă  consulter Le Monde avec ce compte. Que se passera-t-il si vous continuez Ă  lire ici ? Ce message s’affichera sur l’autre appareil. Ce dernier restera connectĂ© avec ce compte. Y a-t-il d’autres limites ? Non. Vous pouvez vous connecter avec votre compte sur autant d’appareils que vous le souhaitez, mais en les utilisant Ă  des moments diffĂ©rents. Vous ignorez qui est l’autre personne ? Nous vous conseillons de modifier votre mot de passe. Accueil/ PITON DE LA FOURNAISE RANDO-VOLCAN (1) PITON DE LA FOURNAISE RANDO-VOLCAN (1) 24Juil 0. PITON DE LA FOURNAISE RANDO-VOLCAN (1) Partagez via. Cliquez pour partager sur Twitter(ouvre dans une nouvelle fenĂȘtre) Cliquez pour partager sur LinkedIn(ouvre dans une nouvelle fenĂȘtre) Cliquez pour partager sur Facebook(ouvre
VOLCAN. Grand connaisseur des Ă©ruptions du Piton de la Fournaise, Alain Bertil est actuellement en Islande oĂč il est l’un des premiers Ă  avoir assistĂ© Ă  la nouvelle Ă©ruption qui a dĂ©butĂ©, il y a une semaine, non loin du volcan Fagradalsfjall, restĂ© en activitĂ© six mois l'an dernier, attirant plus de 400 000 visiteurs. Le passionnĂ© et militant de l’ouverture des Ă©ruptions au public Ă  La RĂ©union compare les deux visions qui s’opposent ici et lĂ -bas. En Islande, des dizaines de milliers de personnes ont dĂ©jĂ  pu approcher la lave Ă  seulement quelques mĂštres sur la base d’une responsabilitĂ© Ă  la fois individuelle et collective. A La RĂ©union, c’est toujours au mieux de trĂšs loin que le public peut admirer le spectacle de son volcan. Les Ă©ruptions, c’est mieux en Islande titrait le JIR il y a un an. C’est plus vrai que jamais. Le site de l’éruption est-il trĂšs diffĂ©rent de celui de l'enclos du Piton de la Fournaise en termes de configuration, d'accĂšs, de dangerositĂ© ? "L’éruption est situĂ©e dans la pĂ©ninsule de Reykjanes, Ă  40 km Ă  vol d’oiseau du centre de la capitale, Reykjavik et plus proche encore du cĂ©lĂšbre site touristique "Blue Lagoon". Le site est le mĂȘme que celui oĂč a eu lieu la cĂ©lĂšbre Ă©ruption qui a durĂ© 6 mois en 2021, au volcan Fagradalsfjall. La configuration gĂ©ologique est diffĂ©rente de l’Enclos FouquĂ© Ă  La RĂ©union. Il ne s’agit pas d’une caldera mais de collines et de vallĂ©es, d’origine volcanique quand mĂȘme puisque l’Islande entiĂšre a Ă©tĂ© formĂ©e par des Ă©ruptions volcaniques. Quelles sont les conditions pour accĂ©der Ă  la coulĂ©e ? L’éruption est libre d’accĂšs pour tous. Ainsi qu’on le sait maintenant, j’ai eu la chance inouĂŻe d’assister Ă  son dĂ©but. AprĂšs l’euphorie de l’évĂ©nement et quelques photos, j’ai rebroussĂ© chemin, pour me prĂ©server du possible danger de l’ouverture d’une nouvelle fissure et aussi pour ne pas me mettre en porte Ă  faux avec les autoritĂ©s islandaises qui allaient organiser la rĂ©ponse Ă  l’évĂ©nement. A mon retour au parking, une heure et demie aprĂšs, j’ai vu la tĂ©lĂ©vision islandaise arriver pour retransmettre l’éruption en direct. EnormĂ©ment de voitures convergeaient vers ce parking. Nous ne sommes pas vraiment encadrĂ©s. Les sentiers sont balisĂ©s ; des cordes ont Ă©tĂ© installĂ©es pour aider Ă  monter et descendre quand les dĂ©clivitĂ©s sont importantes. La sĂ©curitĂ© civile se montre trĂšs prĂ©sente, puisqu’on la voit partout, mais aussi trĂšs discr&egra... À ne pas manquer Volcan "Ici, on ne vous dit pas n’y allez pas" VOLCAN. Grand connaisseur des Ă©ruptions du Piton de la Fournaise, Alain Bertil est actuellement en Islande oĂč il est l’un des premiers Ă  avoir assistĂ© Ă  la nouvelle Ă©ruption qui a dĂ©butĂ©, il y a une semaine, non loin du volcan Fagradalsfjall, restĂ© en activitĂ© six mois l'an dernier, attirant plus... L'Ă©ruption continue, avec panache La mĂ©tĂ©o plutĂŽt clĂ©mente et un ciel trĂšs dĂ©gagĂ© permettaient ce matin d'observer parfaitement le panache de l'Ă©ruption, poussĂ© par le vent dans une direction gĂ©nĂ©rale sud-est, comme on le voit sur la camĂ©ra localisĂ©e Ă  l'anse des Cascades. Il est composĂ© de beaucoup de vapeur d'eau trĂšs prĂ©sen...
Eruptiondu Piton de la Fournaise : l’activitĂ© confinĂ©e en tunnel est difficilement visible pour les randonneurs 30/12/2021. attaques de requins. Crise requin : les ï»żLa seconde Ă©ruption de l'annĂ©e 2021 fut tout Ă  fait classique pour ce volcan sur l'Ăźle de la RĂ©union, localisĂ©e Ă  l'intĂ©rieur de l'Enclos FouquĂ© inhabitĂ© qui accueille 98 % des Ă©ruptions. En consĂ©quence, l'Ă©ruption n'a engendrĂ© aucun risque direct et fut un spectacle naturel grandiose que nombreux purent observer du bord de l'Enclos. Et mĂȘme si le dĂ©bit Ă©ruptif fut parfois impressionnant, aucune manifestation durant cette Ă©ruption ne fut particuliĂšrement inhabituelle... jusqu'Ă  l'observation de flammes bleu Ă©lectrique Ă  la fin de l'Ă©ruption, un phĂ©nomĂšne exceptionnel pour le Piton de la Fournaise ! Cela vous intĂ©ressera aussi [EN VIDÉO] 8 choses Ă  savoir sur les volcans Objets de fascination et de terreur, les volcans font partie des forces les plus irrĂ©ductiblement indomptables de la nature. De l'origine mythologique de leur nom aux Ă©ruptions qui ont marquĂ© l'Histoire, voici 8 choses Ă  savoir sur eux. L'Ă©ruption commencĂ©e le 22 dĂ©cembre s'est arrĂȘtĂ©e lundi matin, le 17 janvier, Ă  2 h 10 prĂ©cisĂ©ment. Comme l'on coupe un robinet, la Fournaise a fermĂ© les vannes. Mais le spectacle n'Ă©tait visiblement pas totalement terminĂ©, car des observateurs ont remarquĂ© de jolies flammes bleues s'exhalant d'un orifice formĂ© dans la partie amont du cĂŽne Ă©ruptif Ă©difiĂ© lors de cette ce phĂ©nomĂšne volcanique rare a dĂ©jĂ  Ă©tĂ© observĂ© sur d'autres volcans, au Kawah Ijen en IndonĂ©sie notamment, il semble que ce soit sa premiĂšre observation sur le Piton de la Fournaise...Des flammes bleues observĂ©es sur le Piton de la Fournaise, le 17 janvier 2022. © LĂ© bon la RĂ©union, YouTubeCette Ă©mission de lumiĂšre bleue tĂ©moigne de la combustion du soufre Ă  trĂšs haute tempĂ©rature. Plus prĂ©cisĂ©ment, le soufre Ă  l'Ă©tat de vapeur peut se combiner en une molĂ©cule de disoufre S2 si la tempĂ©rature est suffisamment Ă©levĂ©e, mais elle est instable, excitĂ©e. Pour revenir Ă  un Ă©tat stable, elle Ă©met de l'Ă©nergie, Ă  l'origine de cette Ă©mission de lumiĂšre bleue. Ce phĂ©nomĂšne s'appelle la Ă©tant, le caractĂšre exceptionnel de cette observation sur le Piton de la Fournaise pose question, car manifestement, le dĂ©gazage Ă  trĂšs haute tempĂ©rature et riche en soufre que ce phĂ©nomĂšne requiert ne correspond pas Ă  des conditions habituelles. Et si les hautes tempĂ©ratures sont de coutume en pĂ©riode Ă©ruptive, il est possible que le mĂ©lange des gaz volcaniques empĂȘche une grande concentration du soufre dans le dĂ©gazage. Mais dans ce cas prĂ©cis, il semble que cet orifice sur le cĂŽne Ă©ruptif ait permis au soufre de se concentrer Ă  cet endroit, la fin de l'Ă©ruption permettant, elle, de maintenir des tempĂ©ratures trĂšs Ă©levĂ©es...Étonnantes flammes bleues sur le volcan Kawah Ijen, en IndonĂ©sie Ă  partir de 1’10. © Olivier GrunewaldUne Ă©ruption classique, mais d’importance C'est aprĂšs un peu plus de deux heures d'une crise sismique qui accompagna la remontĂ©e du magma vers la surface, que l'Ă©ruption commença dans le secteur le plus actif de ces derniĂšres annĂ©es, au sud du cĂŽne sommital du volcan. Une fissure Ă©ruptive de 800 mĂštres de long s'ouvrit, libĂ©rant le magma sous pression sous la forme d'une multitude de fontaines de lave de 20 Ă  30 mĂštres de haut tout du long de tour Ă  tour, ces Ă©vents s'Ă©teignirent et l'Ă©ruption se stabilisa dans la partie basse de la fissure et ce, jusqu'Ă  la fin de l'Ă©ruption. L'Ă©clatement des bulles de gaz arrivant du conduit volcanique Ă  ce niveau permit la fragmentation d'une partie de la lave et la formation de projections volcaniques qui, en retombant aux alentours, ont construit un cĂŽne volcanique d'environ 30 mĂštres de cette activitĂ© explosive est marquante pour les observateurs, bien que d'ampleur modeste au regard d'autres volcans, ces projections volcaniques ne reprĂ©sentent qu'environ 2 % du volume total, le reste correspond aux coulĂ©es de lave !L’activitĂ© du 13 janvier 2022 en images. © Olivier Lucas-LeclinLe dĂ©bit important au dĂ©part de l'Ă©ruption engendra une premiĂšre coulĂ©e de lave d'environ deux kilomĂštres de long vers le sud-est. Mais la diminution du dĂ©bit et la formation de tunnels de lave formĂšrent ensuite un champ de lave lisse Ă  proximitĂ© du cĂŽne. Puis, le 6 janvier, sans doute sous l'effet d'une franche hausse du dĂ©bit Ă©ruptif, le lac contenu dans le cĂŽne Ă©ruptif dĂ©borda et alimenta une longue coulĂ©e qui atteignit le rempart de l'Enclos aprĂšs plus de trois kilomĂštres de parcours. Ce dĂ©bit important perdura jusqu'Ă  la fin de l'Ă©ruption, permettant au champ de lave de s'Ă©tendre sur plus de 200 hectares et Ă  une coulĂ©e d'atteindre la base du Nez CoupĂ© du Tremblet, aprĂšs un trajet de plus de cinq kilomĂštres. Le volume de cette Ă©ruption n'est pas encore connu, mais nul doute qu'il sera assez consĂ©quent !Le Piton de la Fournaise s’agite dans son sommeilLes RĂ©unionnais doivent-ils craindre une nouvelle Ă©ruption du Piton de la Fournaise avant la fin de l'annĂ©e ? Certains signes laissent en effet penser que le volcan se prĂ©pare doucement, mĂȘme si pour l'instant le rĂ©servoir magmatique reste de Morgane Gillard, publiĂ© le 18 novembre 2021Hier soir, 17 novembre 2021, un Ă©pisode d'activitĂ© sismique a Ă©tĂ© enregistrĂ© au niveau du Piton de la Fournaise, volcan emblĂ©matique de l'Ăźle de la RĂ©union. D'origine volcano-tectonique, ces 42 secousses ont Ă©tĂ© localisĂ©es sous la bordure nord du cratĂšre Dolomieu, Ă  faible rĂ©servoir magmatique se recharge progressivement en magmaD'aprĂšs l'Observatoire volcanologique du Piton de la Fournaise, ces petits sĂ©ismes de faible intensitĂ© indiquent que la pression continue Ă  monter au sein du rĂ©servoir magmatique superficiel du volcan. Cette activitĂ© s'accorde avec la reprise de l'inflation des flancs depuis le 18 octobre dernier, date Ă  laquelle les scientifiques avaient craint le dĂ©but d'une nouvelle Ă©ruption Ă  cause d'une brĂšve injection de magma vers la surface. Tout s'Ă©tait alors stoppĂ©, mais ce regain d'activitĂ© sismique signifie que le rĂ©servoir continu Ă  ĂȘtre rĂ©alimentĂ© progressivement en magma. Cependant, aucune dĂ©formation rapide du sol n'a Ă©tĂ© mesurĂ©e au cours des derniĂšres heures, un indice rassurant qui permet de dire que le magma n'a pour l'instant pas quittĂ© le rĂ©servoir magmatique niveau d’alerte vigilance toujours de miseLe Piton de la Fournaise est donc toujours en phase de sommeil, bien que lĂ©ger, mĂȘme si ces signes d'activitĂ© ont fait passer le volcan en niveau d'alerte vigilance. En effet, la pressurisation de la chambre magmatique peut entraĂźner la rupture du toit du rĂ©servoir, permettant alors la remontĂ©e du magma vers la surface et engendrant de fait une nouvelle Ă©ruption. Cependant, atteindre ce point de pression maximal peut prendre plusieurs jours Ă  plusieurs semaines, et il n'est Ă©galement pas exclu que le processus s'arrĂȘte de n'est donc sĂ»r concernant une potentielle Ă©ruption Ă  brĂšve Ă©chĂ©ance mais la prudence reste de mise. Pour rappel, le Piton de la Fournaise est l’un des volcans les plus actifs au monde et entre en Ă©ruption de façon trĂšs rĂ©guliĂšre. La derniĂšre date de mai dernier et les donnĂ©es scientifiques font penser qu'une nouvelle Ă©ruption devrait probablement avoir lieu avant la fin de l' Top 15 des volcans les plus dangereuxLe Mont Tavurvur, en Papouasie-Nouvelle-GuinĂ©e Le Mont Tavurvur est un volcan situĂ© dans la baie de Rabaul, en Papouasie-Nouvelle-GuinĂ©e. RĂ©cemment, il est entrĂ© en Ă©ruption en 2014. Cette Ă©ruption a projetĂ© de nombreuses cendres dans les environs. Les Ă©ruptions prĂ©cĂ©dentes dataient de 1937, 1941, 1943 et 1994-1995. L'Ă©ruption de 1994-1995 a conduit Ă  l'Ă©vacuation et la destruction de la ville de Rabaul, qui a perdu son statut de capitale depuis cette date. © Taro Taylor, CC by Le BĂĄrarbunga, sous une calotte glaciĂšre islandaise Le BĂĄrarbunga est un volcan islandais qui se prĂ©sente sous la forme d'une fissure situĂ©e sous la plus grande calotte glaciaire de l'Islande. Il est le deuxiĂšme volcan le plus haut d'Islande, avec m d'altitude. Une Ă©ruption a commencĂ© en aoĂ»t 2014. Elle s'est traduite par l'Ă©mission importante de laves et de nuages de cendres. © peterhartree, CC by-sa L'Augustine, sur une Ăźle d'Alaska, un volcan de la ceinture de feu du Pacifique L'Augustine est un volcan situĂ© sur une Ăźle des États-Unis, en Alaska. Une forte Ă©ruption a eu lieu en 2010, la prĂ©cĂ©dente remontant Ă  1986. Ce volcan explosif fait partie de la ceinture de feu du Pacifique. En Ă©ruption, le volcan Ă©met des panaches de cendres et des nuĂ©es ardentes. Les effondrements qui ont parfois lieu peuvent provoquer des tsunamis. © McGimsey, Game DP Le Nyiragongo, un stratovolcan congolais Le Nyiragongo est un stratovolcan situĂ© en RĂ©publique dĂ©mocratique du Congo. Il appartient aux montagnes des Virunga qui font partie de la vallĂ©e du grand rift. Culminant Ă  m d'altitude, il a Ă©tĂ© rĂ©vĂ©lĂ© par Haroun Tazieff. En 2002, son Ă©ruption a dĂ©truit le centre-ville de Goma et en 1977 une violente Ă©ruption a causĂ© la mort de milliers de personnes. Il est l'un des volcans les plus dangereux d'Afrique en raison de sa proximitĂ© avec les zones peuplĂ©es. © Monusco - Neil Wetmore Le Sarytchev, volcan explosif d'une Ăźle russe Le Sarytchev ou pic Sarytchev, haut de m environ, est un volcan situĂ© dans les Ăźles Kouriles, sur l'Ăźle de Matoua, en Russie, dans l'ocĂ©an Pacifique. L'Ă©ruption explosive du 11 au 21 juin 2009 est l'une des plus importantes du XXe siĂšcle et a Ă©tĂ© visualisĂ©e depuis la Station spatiale internationale. Elle a conduit Ă  l'Ă©mission de vapeurs, gaz, cendres et nuĂ©es ardentes Ă  haute tempĂ©rature. L'Ăźle de Matoua, inhabitĂ©e, a ainsi Ă©tĂ© plongĂ©e dans l'ombre. © Nasa - DP Le Pinatubo, stratovolcan des Philippines Le Pinatubo est un stratovolcan actif situĂ© dans l'ouest de l'Ăźle de Luçon aux Philippines, Ă  100 km au nord-ouest de Manille. L'Ă©ruption volcanique de 1991, aprĂšs des siĂšcles de calme, est l'une des plus importantes du XXe siĂšcle. Elle a causĂ© des centaines de morts, malgrĂ© l'Ă©vacuation de milliers de personnes avant l'explosion. Les panaches de cendres ont atteint 40 km d'altitude et une partie des matĂ©riaux Ă©jectĂ©s se sont retrouvĂ©s dans l'atmosphĂšre, provoquant un refroidissement de 0,8 °C pendant deux Ă  trois ans. Les nuĂ©es ardentes ont recouvert de cendres le paysage sur 10 km alentour. Le sommet du volcan qui Ă©tait Ă  m d'altitude a Ă©tĂ© pulvĂ©risĂ©. © Nasa - DP L'Eyjafjöll, le volcan islandais qui perturbe les avions L'Ă©ruption de l'Eyjafjöll, un stratovolcan du sud de l'Islande, a durĂ© de mars Ă  octobre 2010. Cela faisait prĂšs de 190 ans que ce volcan n'avait pas montrĂ© de signe d'activitĂ©. Des panaches importants de poussiĂšres ont Ă©tĂ© Ă©mis, ce qui a perturbĂ© le trafic aĂ©rien dans le nord de l'Europe. L'Eyjafjöll est recouvert d'une calotte de glace et culmine Ă  m. © Sigurdur Jonsson, CC by Le Merapi, un volcan indonĂ©sien trĂšs actif Le Merapi est un volcan d'IndonĂ©sie situĂ© sur l'Ăźle de Java qui culmine Ă  m d'altitude. Il est entrĂ© en Ă©ruption le 26 octobre 2010, nĂ©cessitant l'Ă©vacuation de milliers de personnes. Ce volcan entre rĂ©guliĂšrement en Ă©ruption et reprĂ©sente un danger important pour les populations alentour. L'Ă©ruption de 1930 a Ă©tĂ© particuliĂšrement meurtriĂšre, causant environ dĂ©cĂšs. D'autres Ă©ruptions ont eu lieu en 2006 et 1994. © Keelee University, CC by Le Yasur, volcan actif de l'Ăźle de Tanna, au Vanuatu Le Yasur est un volcan situĂ© sur l'Ăźle Tanna, au Vanuatu, qui fait partie de la ceinture de feu du Pacifique. Son activitĂ© est liĂ©e Ă  la convergence des plaques australienne et pacifique. Le Yasur est un volcan de type strombolien et vulcanien dont l'altitude actuelle se situe autour de 365 m. Ce volcan entre rĂ©guliĂšrement en activitĂ© Ă  intervalles de 24 Ă  30 mois. AprĂšs une pĂ©riode de repos, il Ă©met des cendres qui recouvrent la vĂ©gĂ©tation. L'acide chlorhydrique des panaches provoque des pluies acides nĂ©fastes aux productions agricoles de l'Ăźle. © Eric Fortin, CC by-nc La SoufriĂšre de Montserrat, aux Antilles La SoufriĂšre de Montserrat est un stratovolcan des CaraĂŻbes qui culmine Ă  915 mĂštres sur l'Ăźle de Montserrat, dĂ©pendante du Royaume-Uni. Il est en activitĂ© depuis le 25 juin 1995. Son Ă©ruption de 1997 a dĂ©vastĂ© la capitale, Plymouth, devenue aujourd'hui une ville fantĂŽme. L'Ă©vacuation de la ville a permis de limiter le nombre de morts. Comme l'Ăźle de Montserrat est voisine de la Guadeloupe, l'Ă©ruption de la SoufriĂšre nĂ©cessite aussi des prĂ©cautions sur l'Ăźle française. © Chuck Stanley, CC by-nc Le Krakatoa, en IndonĂ©sie, et son Ă©ruption de 1883 Le Krakatoa est un volcan indonĂ©sien situĂ© dans un archipel d'Ăźles, entre Java et Sumatra. Son activitĂ© est liĂ©e Ă  la rencontre des plaques indo-australienne et asiatique. Il est surtout connu pour son explosion du 27 aoĂ»t 1883, qui a Ă©tĂ© entendue jusqu'en Australie. Cette violente Ă©ruption a tuĂ© des dizaines de milliers de personnes, Ă  cause de la retombĂ©e des cendres et des tsunamis engendrĂ©s par l'effondrement du volcan sous la mer. Les particules Ă©mises dans l'atmosphĂšre ont provoquĂ© une diminution globale de la tempĂ©rature pendant l'annĂ©e suivante. En Europe, cette Ă©ruption a donnĂ© lieu Ă  des couchers de soleil flamboyants. © dhitterrz, CC by-nc Le Sinabung, sur l'Ăźle de Sumatra Le Sinabung est un stratovolcan indonĂ©sien culminant Ă  prĂšs de mĂštres d’altitude sur l’üle de Sumatra. Il est en activitĂ© depuis 2010. Des Ă©ruptions ont eu lieu en 2014 et 2015. En juin 2015, des milliers de personnes ont Ă©tĂ© Ă©vacuĂ©es. Plusieurs aĂ©roports ont aussi Ă©tĂ© fermĂ©s Ă  cause des panaches de fumĂ©e dus Ă  l'Ă©ruption volcanique. © DP L'Etna, un volcan italien toujours trĂšs actif, en Sicile L'Etna est un volcan d'Italie situĂ© en Sicile. Culminant Ă  mĂštres d'altitude, l'Etna est le volcan en activitĂ© le plus haut d'Europe. Son Ă©ruption conduit Ă  l'Ă©mission de colonnes de cendres et de lave. Il s'agit d'un volcan strombolien avec une lave relativement fluide. Actif depuis des dĂ©cennies, le volcan a connu une grosse Ă©ruption en 1992. L'une des Ă©ruptions les plus importantes de son histoire a eu lieu en 1669. © Davide Nicotra, CC by-nc Le Mont Saint Helens, un stratovolcan amĂ©ricain Le Mont Saint Helens est un stratovolcan actif situĂ© dans le nord-ouest des États-Unis, Ă  150 km de Seattle. En 1980, aprĂšs 150 annĂ©es d'inactivitĂ©, le volcan a montrĂ© des signes d'activitĂ© avec des sĂ©ismes et des Ă©ruptions phrĂ©ato-magmatiques, jusqu'Ă  la violente explosion du 18 mai 1980 qui a transformĂ© l'aspect du volcan. © Lyn Topinka, DP La caldeira de Yellowstone, un supervolcan en sommeil La caldeira de Yellowstone, ou supervolcan de Yellowstone, est un volcan des États-Unis situĂ© dans le parc national de Yellowstone. La caldeira est le signe que le volcan s'est effondrĂ© lors d'une violente Ă©ruption. La croĂ»te terrestre est particuliĂšrement fine au niveau de la caldeira. Ce volcan est endormi depuis environ ans. En 2014, un sĂ©isme de magnitude 4,8 a Ă©tĂ© ressenti dans la rĂ©gion, faisant craindre un rĂ©veil du supervolcan. © Mila Zinkova, CC by-sa IntĂ©ressĂ© par ce que vous venez de lire ? OiNNO.
  • 9imovkzvpz.pages.dev/312
  • 9imovkzvpz.pages.dev/407
  • 9imovkzvpz.pages.dev/100
  • 9imovkzvpz.pages.dev/254
  • 9imovkzvpz.pages.dev/215
  • 9imovkzvpz.pages.dev/448
  • 9imovkzvpz.pages.dev/87
  • 9imovkzvpz.pages.dev/119
  • camera volcan piton de la fournaise